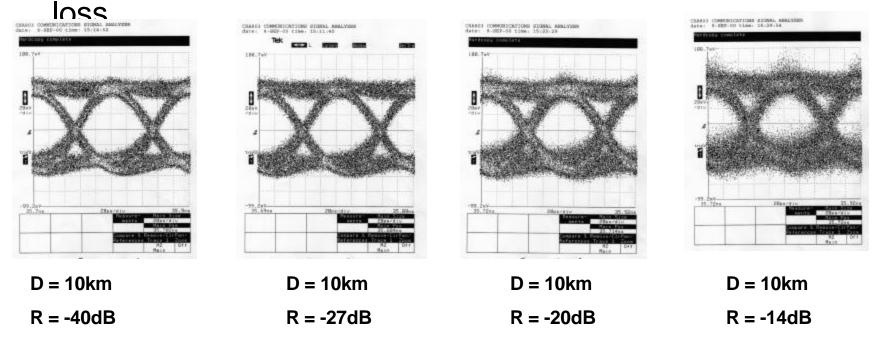
IEEE 802.3ae Meeting, New Orleans, Sept. 12-14, 2000

Comments on Serial PMD Optical Specs.

Marc Verdiell, LightLogic Inc. mverdiell@lightlogic.com

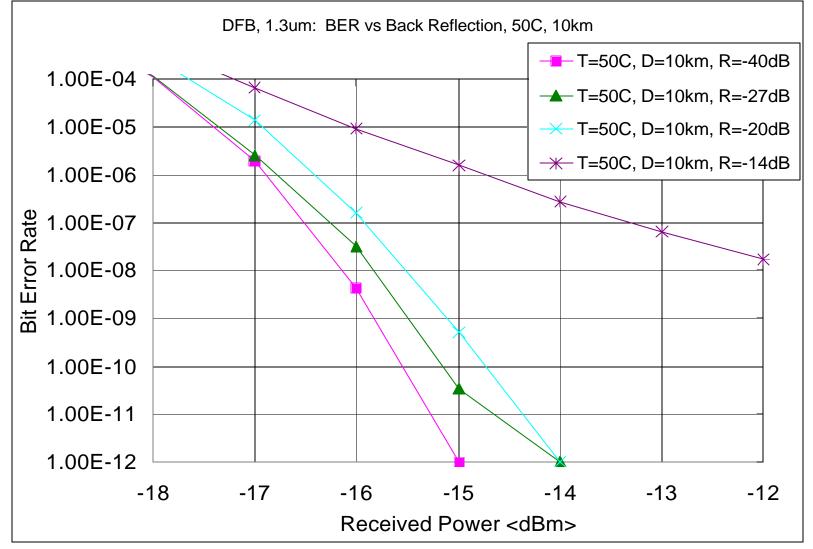
Specifics of 10 Gb/s 1.3 and 1.5 nm single-mode links

- Dispersion limited, laser chirp is important factor
- Transmitters are expensive
 - Fabry Perot = \$, DFB= \$\$, Externally Modulated = \$\$\$
 - Isolation comes at a price premium
 - Cooling comes at a price and power consumption premium
- Receivers are expensive
 - PIN=\$, APDs= \$\$
- Need to avoid over-specifying optical interfaces
- Current interfaces specification is more difficult than SONET

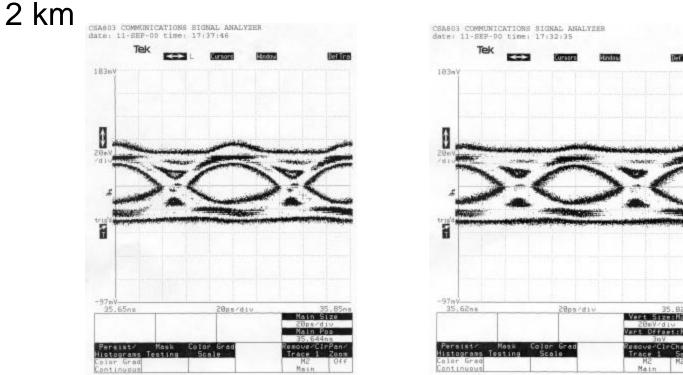

Problematic Specifications

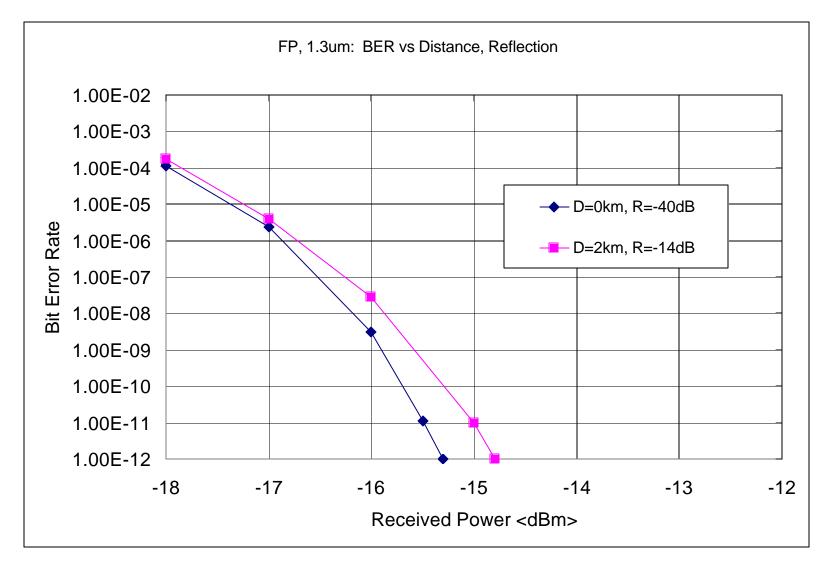
- 1. **10 km distance spec. eliminates Fabry Perot solution**. A 2 km spec could allow lower cost FP solution.
- 2. 12 dB return loss requires isolation at transmitter. A 20 dB spec could allow unisolated DFB for 10 km, and 14 dB could allow unisolated Fabry-Perot over 2km.
- 3. -20 dBm sensitivity requires APD receiver. At -18 dB we could use PIN receiver.
- Eye mask is too stringent. Even good SONET lasers (-14 dBm sensitivity at 10⁻¹² BER) might not pass.
- 5. Rise times too stringent. Need only to pass eye mask and BER.
- Spectral quality not well specified. RMS wavelength not relevant for 10 Gb/s Single Mode links. Should use dispersion penalty specification instead.
- -140 RIN is too stringent. Might need double stage isolation/high power
 DFB. The link should not be RIN limited anyhow.

1.3um DFB with Back Reflection


- Common Conditions: T=50C, Extinction Ratio=6 dB, Distance=10 km
- Varying return loss from -40 to -14 dB
- This un-isolated DFB cannot work under -14 dB return

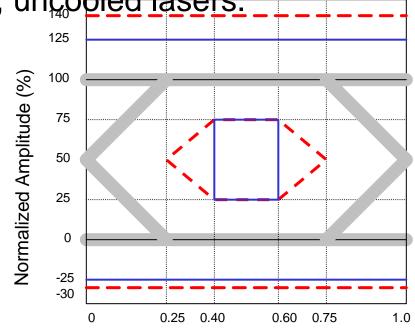
LightLogic


DFB, 1.3um: BER vs. Back Reflection


FP, 1.3um: Eye Diagrams vs. Back Reflection

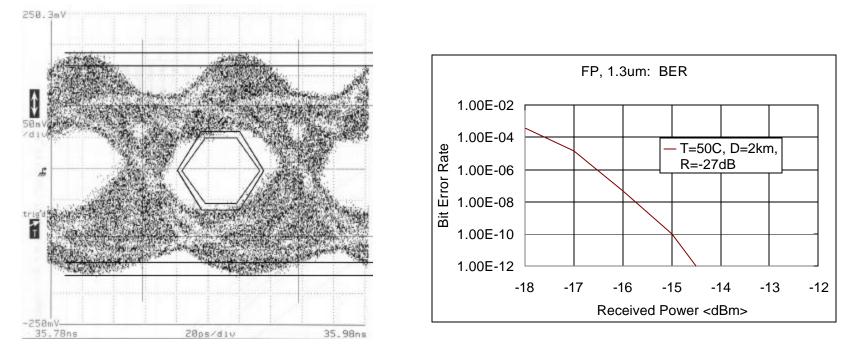
- Common Conditions: T=25C, Extinction Ratio=6 dB
- This un-isolated FP can work under -14 dB return loss at

D = 0km R = -14dB


LightLogic

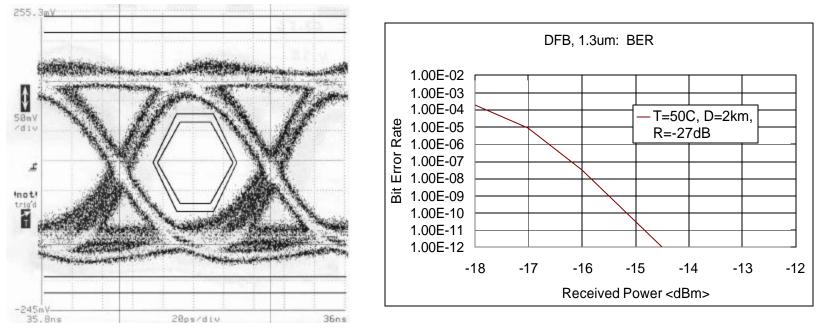
OC-48 Sonet vs Proposed 10GbE

Our 10 GbE Proposal (dashed)



- Start with scaled OC-48 SONET mask (solid square)
- Added "corners" internal to eye, corresponding to previous 1GbE spec.
- Enlarged over and under shoot areas to allow for direct modulated, uncooled lasers.

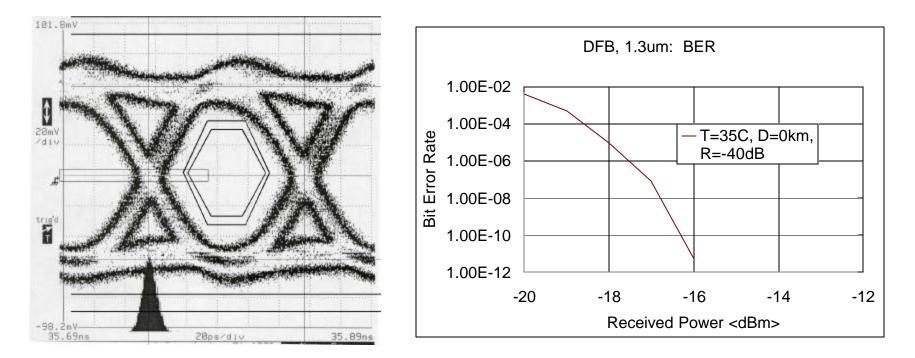
Eye Mask Example 1 - Uncooled FP



Eye of Diode with < 10^-12 BER @ -14 dBm received power

- Outside mask is currently proposed 10 GbE
- Inside mask is our proposed 10GbE (modified SONET)
- Fails both even though it passes BER

Eye Mask Example 2 - Uncooled DFB



Uncooled DFB @ 50 C

- Fails original proposed 10GbE mask.
- Passes our proposed mask.
- BER performance < 10^-12 @ -14 dBm

Eye Mask Example 3 - Cooled Isolated DFB

Cooled/Isolated DFB

- Passes both proposed 10GbE mask and our proposed mask.
- BER < 10^-12 @ 16 dBm

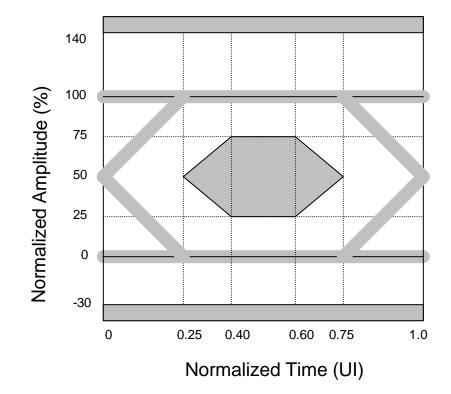


Table 60 - Transmit Characteristics

Descritpion	10GBASE-LX/LW	10GBASE-EX/EW	Units
Transmitter Type	Specified through performance only (mask, dispersion penalty, wavelength)	Covers whatever works: FP, DFB, EA- DFB, VCSEL	
Signaling speed (range)			
10GBASE-LX/EX	10.3125+/-100ppm		GBd
10GBASE-LW/EW	9.95328+/-100ppm		
Wavelength Range	1290 to 1330	1530 to 1565	nm
T _{rise} /T _{fall} (max, 20-80% response time)	50 30	40 30	ps
म _{rise} /T _{fall} (max, 20-80% response time) Eye Mask	see graph		
RMS spectral width Dispersion penalty	1.0	2.0	dB
Average launch power (max)	1.0	2.0	dBm
Average launch power (min)	-4.0	-2.0	dBm
Average launch power of OFF transmitter (max)	-30	-30	dBm
Extinction Ratio (min)	6	8	dB
RIN (max)	-130	-130 -140	dB/Hz

Eye Mask Proposal

13

Revised Table - Receive

Table 61 - Receive Characteristics

Descritpion	10GBASE-LX/LW	10GBASE-EX/EW	Units
Signaling speed (range) 10GBASE-LX/EX 10GBASE-LW/EW	10.3125+/-100ppm 9.95328+/-100ppm		GBd
Wavelength Range	1290 to 1330	1530 to 1565	nm
Average Receive Power (max)	-1.0	-8.0	dBm
Receive Sensitivity	-14	-18 - 20	dBm
Return Loss	-20 -12	<mark>-20 -12</mark>	dB
Stressed Eye Sensitivity	-11.45	-15.41	dBm
Vertical eye closure penalty (?)	1.71	2.72	dB
Receive 3dB cutoff	8.0	8.0	GHz

- We should not make it harder than SONET!
- Proposed revised tables as starting point (need to be worked out further)
- Specification should leave opportunity to use (significantly) cheaper unisolated Fabry-Perot or DFB lasers for 600m-2km reach.