IEEE 802.3ae Meeting, New Orleans, Sept 2000

LightLogic

OMA and Extinction Ratio for Serial PMDs

Marc Verdiell, LightLogic Inc. mverdiell@lightlogic.com

Lower Extinction Ration/OMA

Motivations:

- Lower extinction ratio improves Direct Modulated Laser performance
- Extinction ratio not critical if link not attenuation limited
- OMA simpler concept, provides simpler control loops

DFB, 1.3um: Eye Diagrams vs. Extinction

$$
\mathrm{T}=50^{\circ} \mathrm{C}, \quad \mathrm{D}=10 \mathrm{~km}, \quad \mathrm{R}=-20 \mathrm{~dB}
$$

LightLogic

Irf $=40 \mathrm{~mA}$
$\mathrm{Idc}=39 \mathrm{~mA}$
$\mathrm{Er}>8.2 \mathrm{~dB}$

Cshao3 commentcatrons bicamal anolyzzr

Iff $=40 \mathrm{~mA}$
$\mathrm{ldc}=41 \mathrm{~mA}$
$\mathrm{Er}>6 \mathrm{~dB}$

Irf $=40 \mathrm{~mA}$
$\mathrm{ldc}=54 \mathrm{~mA}$
Er $>4 \mathrm{~dB}$

BER vs Received Power for Three Extinction
 Ratios

LightLogic

Received Power Correction for OMA

LightLogic

BER vs OMA for Three Extinction Ratios

LightLogic

Conclusion

Flexibility in ER might be advantageous

- Lowering Extinction ratio to 6 dB slightly improved absolute sensitivity
- Lowering extinction ratio to 4 dB slightly decreased absolute sensitivity
For long distance:
- Unspecified or too low an ER might cause problems in amplified links
OMA is OK as long as we don't overload receiver

