Coupled Diode Discovery Protocols and Prototypes

Rick Brooks ribrooks@nortelnetworks.com Larry Miller Idmiller@nortelnetworks.com IEEE802.3af Plenary Meeting, July, 2000

Discovery Process Goals

- identify appropriate power hungry devices
- identify cable and connection problems
- avoid powering legacy equipment
- minimize the probability of a false detection
- provide a robust system solution
- practicable at a relatively low cost
- allow transparent use of straight and crossover cables
- enable powering without the need for management
- allow for the use of multiple DTE power sources
 - want to be independent of power sequencing
 - discovery method needs to be independent of data transmission

Common Mode Discovery Block Diagram

- uses an AC coupled diode network for polarity sensitive detection
- transformer coupled common mode technique provides 2200 VDC isolation
- pulses and synchronous detection are digitally controlled,
- pseudo random idle spaces are used: lower radiated emissions, harder to fool

POWER DELIVERY PATH Coupled Diode Protocols and Prototypes, Rick Brooks, IEEE 802.3, July 2000

Common Mode Discovery, coupled diode network

- Diode detection modified to allow either polarity of DTE power
- allows for low voltage, polarity sensitive discovery using low duty cycle 5us pulses
- with high duty cycle discovery pulses, can be made to look like an open circuit
 - provides a higher level of discovery confidence
- becomes high impedance at +/- 48 VDC
 - resistors can be small size, or integrated
- easily handles 48 volt transients (intermittent contacts, etc...)

General timing during discovery phase

Rick Brooks, IEEE 802.3, July 2000

Synchronous Detection Scheme

- Discovery requires a set of consecutive successful discovery cycles
 - the prototype requires 256 consecutive discovery cycles

Basic Flow Diagram, Discovery and Power Control Protocols

NORTEL NETWORKS

Typical Discovery Pulse Generation Protocol

Midspan Power Insertion Prototype Block Diagram

NORTEL

- Prototype finds powerable DTE devices and automatically powers them •
- Midspan configuration for power insertion, can be used to put power on an existing link
- 48VDC/48VDC isolated power module with status and control signals
- Verilog code implemented in a PLD for discovery and power control

NETWORKS

Midspan Prototype Measurements, 120 meter CAT 5 cable

Coupled Diode Protocols and Prototypes, Rick Brooks, IEEE 802.3, July 2000

13:34:30

1.42 V 8 Jul 2000

13:38:55

Midspan Prototype Measurements, 181 meter CAT 5 cable

diode non-conducting direction

diode conducting direction

Midspan Prototype Measurements - Discovery Sequence

A successful set of 256 consecutive discovery cycles, total discovery time is 203ms, the lower trace is n_turn_power_on

close up of the alternating pattern of drive #1 and drive #2, the higher amplitude pulses are the transmit, the lower amplitude pulses are receive (120m. Cable)

Summary

- The Midspan prototype demonstrates that the common mode discovery mechanism, using the coupled diode identity performs well for discovery and power control
 - the digital technique is robust, works with 180 meters of cable
 - automatically powers up when a successful detection is made
 - automatically powers down when the cable is unplugged
 - does not power legacy equipment
 - Verilog code and prototype schematics are available

• more investigation and testing are needed:

- further developments:
 - reduce to single coupling transformer
 - cost reduction: investigate whether the coupling transformer saturation due to DC load current is a viable way of detecting when the cable is unplugged
- need to do the "three fingers" tests
- need to see if power and data are really independent from each other
- need to find if the discovery method can be fooled, ESD, radiated emissions...
- we are looking for people who are interested in performing some tests, we can provide some more prototypes

• acknowledgements:

— Larry Miller, Robert Muir, Dan Dove, and diode lovers everywhere...

