CX4 Minimum Transmit Level

Vancouver, BC Jan 7-8, 2003

Steve Dreyer
Schelto Van Doorn
Don Alderrou
Intel Corp.

Agenda

- Criteria
- 1.2V Design Limitations
- Summary

What Should Be Criteria for Min Transmit Level?

- Meet CX4 Objectives
- Not exclude any existing XAUI designs
- This means:
 - 1. Transmit level no higher than XAUI (CX4 Objective)
 - 2. Compatible with existing and future process (CX4 Objective)
 - 3. Achievable with existing power supplies
 - 4. Low power

Let's look at each of the above a little closer

What Does "Transmit level no higher than XAUI" Mean to CX4 Min Transmit Level?

- XAUI requires that transmit level specs be met at EITHER near end or far end, but NOT BOTH
 - If near end is chosen, level = 800-1600 mV pp dif
 - If far end is chosen, level = 500-1600 mV pp dif
- Per above, if CX4 "transmit level no higher than XAUI", it will have to be spec'd at 500-1600 mV pp dif
 - Since CX4 cable attenuation is ~20db @ 1.5Ghz, a min xmt level of 500mV would result in ~50mv rcv level → Too low!
 - Might make sense to let min transmit level be dictated by the other constraints

Vancouver, BC Jan. 7-8, 2003 CX4 Min Transmit Level Page 4

What Does "Compatible with existing and future process" Mean to CX4 Min Transmit Level?

- Most current XAUI designs on 180 & 130nm process
- Newer XAUI designs on 90nm process
- Power supply voltage limits min transmit level

Process	VDD for core xstors
180nm	1.8V
130nm	1.2V
90nm	1.0-1.2V

Vancouver, BC Jan. 7-8, 2003 CX4 Min Transmit Level Page 5

cont'd

- Thick oxide transistors could be used instead of core transistors. However, some drawbacks:
 - Slower
 - More ISI
 - Larger area
 - Higher power dissipation
 - Needs higher supply than core transistors
 - Example: Can't use VDD=1.2V in 130nm, would need VDD=1.8
 - May require chips to have two supplies
 - 1.2V for logic
 - Additional higher supply for analog

cont'd

- Single supply very desirable
 - Multiple supplies are negative from system standpoint
 - Single supply XAUI designs already out @ VDD=1.2V
 - Single supply allows easier integration on larger ASIC's
- Lowest supply very desirable

Jan. 7-8, 2003

- Lowest power
- Lowest area
- End Result:
 - Desireable for min transmit level that is achievable from a single power supply in range of VDD=1.2V-3.3V typ

What Does "Achievable with existing power supplies" Mean to CX4 Min Transmit Level?

- Existing XAUI designs have supplies in range of VDD=1.2V to 3.3V
- Some existing XAUI designs use single supply
- End Result:
 - Desireable for min transmit level that is achievable from a single power supply in range of VDD=1.2V-3.3V typ

What Does "Low power" Mean to CX4 Min Transmit Level?

- Low power important as XAUI gets integrated into digital chips and as systems/modules get smaller
- Low power = single, low voltage power supply
- Lowest supply voltage for current and future process is 1.2V
- End Result:
 - Desireable for min transmit level that is achievable from a single power supply in range of VDD=1.2V

Transmit Level Criteria Summary

- CX4 min transmit level should be spec'd to whatever is achievable with VDD=1.2V to 3.3V
- Since VDD=1.2V is worst case for min transmit level, let's see what is feasible with that supply

Agenda

Criteria

- 1.2V Design Limitations
- Summary

Typical VDD=1.2V Transmit Driver Circuit in 130nm Process

- Standard CML driver
- Because of AC coupling, DC drop is entirely across 50 ohms on chip.
- That pushes low level below ½ supply
- Still get DC xmt level = 960mV pp dif typical

10G CX4 Study Group

Look at Previous Circuit Under Worst Case Conditions

- Worst case conditions: VDD=1.05, 125C, fast process
- DC Transmit level now reduced to 720 mV pp dif
- Level limited by common source xstors being in triode

10G CX4 Study Group

Could Improve Previous Case by Adding Level Shift

Level shift input voltage from previous stage by 100mV

- DC transmit level improves to 800mV pp dif
- Puts burden on previous stage design, difficult but doable
- Above doesn't factor in worst case external termination resistor value (return loss spec allows ~50% R_{TERM} error)

Vancouver, BC Jan. 7-8, 2003 CX4 Min Transmit Level Page 14

DC Simulation Results for Previous 3 Cases

Vancouver, BC Jan. 7-8, 2003 CX4 Min Transmit Level

Page 15

What About AC Transmit Level?

- The previous slides only showed DC simulation results
- AC levels could be lower due to speed limitations in the circuits
- Let's look at AC level simulation results for previous 3 cases

AC Simulation Results for Previous 3 Cases

Vancouver, BC Jan. 7-8, 2003 CX4 Study Group

CX4 Min Transmit Level Page 17

AC Simulation Results

- From previous page, AC min transmit level even lower than DC
 - Typ Conditions: 950 mV pp dif
 - Worst Case Conditions: 680 mV pp dif
 - Worst Case Conditions, w/Level Shift: 780 mV pp dif

What About Other Processes?

- Did same simulations in a 90nm process
- Got almost same results, level was ~10mV higher

Achievable Min Transmit Level @ VDD=1.2V

Simulation Result Summary

Conditions	Min Transmit Level From Simulation (mV pp dif)		
	DC	AC	
Typical Conditions	960	950	
Worst Case Conditions	720	690	
Worst Case Conditions, w/Level Shift	800	780	

 Typical driver circuit can support 780mV pp dif min spec in 180nm, 90nm process

Agenda

- Criteria
- 1.2V Design Limitations

Summary

CX4 Transmit Level Summary

- CX4 spec should allow single supply designs
- CX4 spec should allow VDD=1.2V designs
- To accommodate above:
 - Min transmit level spec → 750 mV pp dif
 - Min level dictated by process, power supply, low power constraints
 - Max transmit level spec → 1600 mV pp dif
 - Max level dictated by existing XAUI spec
- Results have been validated in both 180nm and 90nm process

Backup

Current XAUI Transmit Level Specs

Figure 47-4-Driver template

Table 47-2—Driver template intervals

Symbol	Near-end value	Far-end value	Untis
X1	0.175	0.275	UI
X2	0.390	0.400	UI
A.1	400	100	mV
A.2	800	800	mV

10G CX4 Study Group