

Ze'ev Roth, Dimitry Taich

Overview

- Goal: study implication of Tx template
- Method: Simulate pattern 01111110000 through transmitter model:
 - 2nd order lpf with pole at 1.9GHz
 - Jitter (Random + deterministic < 0.35UI p2p)
- Test for range of supported Pre-emphasis values
- Notation:
 - Pre_emphasis filter: $y(n)=(x(n)-\alpha^*x(n-1))/(1+\alpha)$
 - Pre_Emphasis= $(1-\alpha)/(1+\alpha)$
 - Computed α_{nominal} = 0.65; Pre_emphasis=79% (!) in CX4 accepted terminology
 - From template

Tx Template for Various Alpha

Zoom In on Initial Rise

Only nominal (Alpha= 0.65) and Alpha=0.55 conform

Zoom In on Positive Peak

None of the values conform including the nominal 0.65

Zoom In on Positive Steady State

Only nominal (Alpha= 0.65) and Alpha=0.6 conform

Zoom In on Fall

None of the values conform including the nominal 0.65

Summary

- This template is not consistent
 - Even nominal value or pre-emphasis doesn't conform
- Template needs to be revised to accommodate:
 - Variations in Alpha
 - Variability of Tx LPF
 - Tx Jitter
- Perhaps rather than specifying the pre_emphasis at TX output directly we should aim to measure it indirectly at end of compliant channel