

BitBlitz Communications

CX4 Register Bits Revisiting Comments # 1, # 329, etc.

Register 1.7 in 802.3ae-2002

> Pattern of bits 1.7.2:0 :-

Bits 2:0	PMA/PMD Type
111	10GBASE-SR
110	10GBASE-LR
101	10GBASE-ER
100	10GBASE-LX4
011	10GBASE-SW
010	10GBASE-LW
001	10GBASE-EW
000	Reserved

Registers 1.7 & 1.8 in 802.3ae-2002

Relationship of bits 1.7.2:0 to bits in 1.8:-

<u>1.7.2:0</u>	PMA/PMD Type	Bit in 1.8
111	10GBASE-SR	1.8.7
110	10GBASE-LR	1.8.6
101	10GBASE-ER	1.8.5
100	10GBASE-LX4	1.8.4
011	10GBASE-SW	1.8.3
010	10GBASE-LW	1.8.2
001	10GBASE-EW	1.8.1
000	Reserved	not a 'type' bit

Logical Patterns in 1.7 & 1.8

- > Each 10GBASE-X has 1.7.1:0 = 00'b
- ➤ The 10GBASE-E, -L and -S have 1.7.1:0 as 01'b, 10'b & 11'b in order.
- All 10GBASE-W have 1.7.2 = 0, all 10GBASE-R have 1.7.2 = 1

➤ In register 1.7, only 7 of the available 65k values are used. Register 1.8 is nearly full.

Proposed Register 1.7 for 802.3ak

> Pattern of bits 1.7.3:0 :-

Bits 3:0	PMA/PMD Type
1100	10GBASE-CX4
1000:1011	Reserved
0111	10GBASE-SR
0110	10GBASE-LR
0101	10GBASE-ER
0100	10GBASE-LX4
0011	10GBASE-SW
0010	10GBASE-LW
0001	10GBASE-EW
0000	Reserved

Registers 1.7 & 1.8/1.11 in 802.3ak

Relationship of 1.7 to 1.8 & 1.11:-

1.7.3:0	PMA/PMD Type	Bit in 1.8/1.11
1100	10GBASE-CX4	1.11.4
1000:1011	Reserved	1.11.0:3
0111	10GBASE-SR	1.8.7
0110	10GBASE-LR	1.8.6
0101	10GBASE-ER	1.8.5
0100	10GBASE-LX4	1.8.4
0011	10GBASE-SW	1.8.3
0010	10GBASE-LW	1.8.2
0001	10GBASE-EW	1.8.1
0000	Reserved	not a 'type' bit

Future 1.7 & 1.8/1.11 Uses @ 10G

<u>1.7.3:0</u>	PMA/PMD Type	Bit in 1.8/1.11
1101:1111	10GBASE-T?R?	1.11.5:7
1100	10GBASE-CX4	1.11.4
1001:1011	10GBASE-T?W?	1.11.1:3
1000	10GBASE-SX4?	1.11.0
0111	10GBASE-SR	1.8.7
0110	10GBASE-LR	1.8.6
0101	10GBASE-ER	1.8.5
0100	10GBASE-LX4	1.8.4
0011	10GBASE-SW	1.8.3
0010	10GBASE-LW	1.8.2
0001	10GBASE-EW	1.8.1
0000	Reserved	not a 'type' bit

Patterns in 1.7 & 1.8/11 as proposed BitBlitz communications

- \triangleright Each 10GBASE-X has 1.7.1:0 = 00'b
- ➤ The 10GBASE-E, -L and -S have 1.7.1:0 as 01'b, 10'b & 11'b in order, & 1.7.3 = 0.
- ➤ All 10GBASE-W have 1.7.2 = 0, all 10GBASE-R have 1.7.2 = 1
- ➤ The 10GBASE-T (variations) have 1.7.3 = 1 and(whatever)
- ➤ In register 1.7, less than 16 of the available 65k values are used. Register 1.8 is full, new 1.11 is half full.

Future Expansion?30G;40G;100G?

- What future extensions can we imagine?
 - 30GBASE-CX##, a 30G equivalent to the IBx12?
 - 40GBASE-xxx, a quad XFI-like interface?
 - 100GBASE-???
- ➤ Each of these would require modifications to D.0.5:2 (& 13,6??), and D.4, as well as 1.7, 2.7 & 3.7, 1.11, 3.8...

Accommodating the future in 1.7

- ➤ It would be readily possible to use 1.7.4 as a 30/40GBASE bit, 1.7.5 for 100GBASE. This still leaves 15 total variations of 10GBASE available (9/10 are currently in use or planning).
 - 1BASE uses 1, 10BASE uses 6, 100BASE uses 6, 1000BASE uses 5
- ➤ Or if the field is more crowded, 1.7.5 for 30/40GBASE, and 1.7.6 for 100GBASE. This leaves 32 variations of each.

Enough Room in 1.7?

➤ Even with 32 variations of each, we have 'squandered' only 128 of the 65k available values.

> Are YOU nervous there aren't enough left?

➤ For what? for 1000GBASE, 10KGBASE? Guess what, they have 9 bits left to work on!

Accommodating the future in 1.11, etc.

- ➤ This is a bigger problem. However, we need space for at least one (probably two) variations of 10GBASE-T, and I can conceive of an XFI-like electrical cable proposal, so (with –R & -W), that fills up the bottom half of 1.11. There are still 7⁽¹⁾ bits left.
- ➤ Still available are 1.12 and 1.13, 30 bits in all⁽¹⁾ which could allow a lot of expansion.
- (1) Allowing for an 'extended...' bit

Recommendations

- ➤ Use a 'rational' structure for 1.7, and 1.11 expansion for CX4, rather than one driven by 'conserving' a very plentiful resource.
- ➤ Structure this expansion so as to accommodate likely near-future extensions of the 10GBASE standards, and allow for easy progression to probable further-future extensions (30GBASE, 40GBASE, 100GBASE)

Final Considerations

- ➤ At least this way we reduce the possibility of future committees saying 'Why did those (expletive deleted) WG members do it like <u>THAT!</u>
- And not join the long and embarrassing line of people we now laugh at:-
 - 'Short wave'
 - 'High Frequency', Very High Frequency', 'Ultra High Frequency'....
 - **■** 'Large Scale Integration'....