mysticom

Technology to the Core Revisiting CX4 Transition Time Definition and Measurement Ze'ev Roth

Overview

- Goal
- Transition Time
- Model
- Results
- Conclusions & Recommendations

Objective

Demonstrate that current rise/fall time measurement

results depend on the pre-emphasis value

Phenomena that does not occur for established 20%-80% measurement procedure

Transition Time

Defined in Clause 54.7.3.7 (P802.3ak D5.0)

- "The rising edge transition time shall be between 60 and 130 ps as measured between the -0.35 to the 0.66 normalized levels as specified in 54.7.3.6. The falling edge transition time shall be between 60 and 130 ps as measured between the 0.35 to the -0.66 normalized levels as specified in 54.7.3.6."
- In most applications it's defined as the time between
 - the 20%-80% of the transition swing

Model & Procedure

Simplified model for assessing rise time

- Procedure
 - Calculate Y
 - Perform Template Normalization
 - Measure Rise Time
 - According to standard
 - 20%-80% of normalized template

Results

- By nominal rise we refer to the transition time as measured according to 20%-80% of the transition swing
 - Note that normalization process does not change the 20%-80% transition times

Nominal Rise Time = 128psec

•All three templates are within the limits

Rise-Time "measurements"

	Nominal Rise Time [psec]		
Pre-emphasis			
[%]	64	102	128
24	66	110	142
31	60	98	128
38	54	88	114

Pre-emphasis effects the rise time measurement
About 10% difference from nominal value at low and high pre-emphasis values
Problematic cases are shaded

Conclusions & Recommendations

- Current CX4 definition causes unnecessary coupling between rise/fall time and pre-emphasis.
- Propose to revert to 20%-80% rise time definition
 - Basic idea is that for the normalized template we know that the starting point of the positive transition is at normalized voltage level of -0.69 to define the 20%-80% thresholds all that remains it to find the peak
 - Similarly for negative transition the starting point is 0.69

Rising Edge transition time - proposed definition

- The rising edge transition time shall be between 60 and 130 ps.
- The rising edge transition time will be measured by using the following procedure:
 - 1. Measure the peak normalized template between 0.5UI and 2.5UI called Vp
 - 2. Compute the lower threshold of the positive transition th_low_p= -0.69 + 0.2*(Vp + 0.69)
 - 3. Compute the upper threshold of the positive transition th_up_p = -0.69 + 0.8*(Vp + 0.69)
 - 4. measure the rising time of the normalized template transition from the lower to upper thresholds defined above.

Falling Edge transition time – proposed definition

- The falling edge transition time shall be between 60 and 130 ps.
- The falling edge transition time will be measured by using the

following procedure:

- 1. Measure the peak of the absolute of the normalized template between 5.5UI and 7.5UI called Vn
- Compute the upper threshold of the negative transition th_up_n= 0.69 - 0.2*(Vn + 0.69)
- Compute the lower threshold of the negative transition th_low_n= 0.69 - 0.8*(Vn + 0.69)
- 4. measure the falling time of the normalized template transition from the upper to lower thresholds defined above.