## 10GBASE-T Transmitter SNDR Definition (System ID Approach)

#### IEEE P802.3an Task Force Santa Clara, Feb 2005 Albert Vareljian, Hiroshi Takatori KeyEye



## OUTLINE

- Transmitter Performance Evaluation Block Diagram and Example Tx Impairment Walk-through
- System ID Methodology: Transmitter Characterization Metric Definition
- 10GBASE-T Transmitter Compliance Specification at MDI: Estimated Signal-to-Total-Noise and Distortion Ratio (SNDR) in a given Bandwidth

> Conclusion



#### **Transmitter Performance Evaluation Block Diagram**





## **Tx Chain Key Impairments – Analog and Digital**

- > Non-Linear Distortion (Active and Passive: xFormer, ...)
- > Quantization and Background Noise
- > Noise due Tx Clock Jitter
- Slew Rate Limitations Related
- Imperfect DSP
- Spurious Clock Leakage, Supply, Parasitic Coupling, etc...
- Need a Compact and Meaningful Metric to Account for the Net System Impact



#### **Transmitter Noise-Like Broadband Output: Need Specialized Characterization Methodology**



Signal Power  $\rightarrow$ pwr = psd(f)df



Note – Signal Power Converges fast with f

#### **Tx Impairments – Non-Linear Distortion** Frequency Domain





#### **Tx Impairments – Non-Linear Distortion Time Domain**



Compression in Tx Chain

Will Reduce with Power Back-off  $\rightarrow$  SNDR Improves



#### Tx Impairments – Fast Tx Clock Jitter Frequency Domain





#### **Tx Impairments – Noise due to Fast Tx Clock Jitter** Time Domain



Will Reduce with Power Back-off  $\rightarrow$  SNDR Maintained

Noise due to 5 ps rms Tx CLK Jitter, BW 1-10 MHz

Centered Non-Gaussian Distribution



#### Tx Impairments – Q- and Background Noise Frequency Domain





#### Tx Impairments – Q- and Background Noise Time Domain



Quantization and Background Noise -126 dBm/Hz

Centered Gaussian-like Distribution



May or May NOT Reduce with Power Back-off  $\rightarrow$  SNDR May Degrade

#### **Tx Impairments – Overall Noise and Distortion** Frequency Domain



#### Tx Impairments – What is Observed at MDI Time-Domain Sequence → Frequency Domain Analysis



PSD Mask and Average Output Power Compliance Checked Before SNDR



## **System ID Signal Post-Processing Scheme**





#### System ID Estimated Signal and Total Noise Time-Domain Processing → Frequency Domain Analysis



Example Tx Impairment SNDR: Actual 38.5 vs 38 dB System ID Estimated in ~ 3GHz BW



## **Proposed System ID Tx SNDR Specification**



# Conclusion

- Based on Detailed Analysis of Transmitter Major Impairments SNDR >= 40 dB Objective Provides a Reasonable Feasibility and Complexity Trade-off between Transmitter and Receiver Sections, and is Proposed for the PHY Interoperability Compliance Testing at MDI
- Transmitter Qualification SNDR Metric at MDI and its Derivation Methodology Based on System ID Approach is Introduced
- Complimentary THP Processor Interoperability Compliance Method Needs to be Additionally Defined



# **Back Up Slides**



#### **Non-Linear Distortion Single-Tone Test**



Single Tone SNDR Test: Non-Linear, 5 ps Jitter, Q- and Background  $\rightarrow$  Pass

Actual Normal Operation SNDR =  $38.5 \text{ dB} < 40 \text{ dB} \rightarrow \text{Fail}$ 



## Scope Source 50 MHz, ~46 dB 2<sup>nd</sup>





## Scope Source 50 MHz, ~46 dB 2<sup>nd</sup> → Zoom



Scope Captured Sine Generator THD – Confirmed by Spectrum Analyzer



### **Diff Probe Characteristics**

### Input Noise = 3 mV in 7 GHz → 36 nV/sqrt(Hz) -139 dBm/Hz

Ref. to 316.2 mV into 100 Ohm (0 dBm)



Common mode rejection vs. frequency

Swept frequency response

KEYEYE COMMUNICATIONS



Non-Linear 3<sup>rd</sup>-Order Asymmetric Input-Output Transfer Function (Frequency-independent)





Non-Linear 3<sup>rd</sup>-Order Asymmetric Input-Output Transfer Function Compression "Positive"



#### **Non-Linear Input-Output TF**



Non-Linear 3<sup>rd</sup>-Order Asymmetric Input-Output Transfer Function Compression "Negative"

