

SOLUTIONS

A closer look at Channel Insertion Loss

Presented to: 10GBASE-T Task Force – March 2004 By: Luc Adriaenssens, VP of R&D, SYSTIMAX Solutions

Supporters (list to be updated)

Bob Kenny – GM, Krone

Breaking down the ISO channel loss equation

1 Cordage may have up to 50% more loss per meter than cable. Therefore 10 meters of cordage has the same attenuation as 15 meters of cable resulting in a scaling factor of 1.05

Attenuation of Cat-5e vs Cat-6 Channels

	Attenuation at 100 MHz			
	<u>Cu+sh</u>	Matl	Total	<u>% matl</u>
cat-5/5e	21.68	2.33	24.01	9.7%
cat-6	19.94	1.77	21.71	8.2%
dB red:	1.75	0.56	2.30	
% red:	8.1%	23.9%	9.6%	

	Attenuation at 250 MHz			
	<u>Cu+sh</u>	<u>Matl</u>	<u>Total</u>	<u>% matl</u>
cat-5/5e	34.27	5.83	40.09	14.5%
cat-6	31.50	4.44	35.93	12.3%
dB red:	2.77	1.39	4.16	
% red:	8.1%	23.9%	10.4%	

 Most of the attenuation improvement from cat-5e to cat-6 was obtained via lower copper loss but material loss was also improved

Attenuation of Cat-6 vs Cat-7 Channels

	Attenuation at 250 MHz			
	<u>Cu+sh</u>	<u>Matl</u>	<u>Total</u>	<u>% matl</u>
cat-6	31.50	4.44	35.93	12.3%
cat-7	31.16	2.63	33.79	7.8%
dB red:	0.34	1.81	2.15	
% red:	1.1%	40.8%	6.0%	

	Attenuation at 625 MHz			
	<u>Cu+sh</u>	<u>Matl</u>	<u>Total</u>	<u>% matl</u>
cat-6	49.79	11.09	60.88	18.2%
cat-7	49.26	6.56	55.82	11.8%
dB red:	0.53	4.53	5.06	
% red:	1.1%	40.8%	8.3%	

 As maximum specified frequency range increases, it is more optimum to lower loss by improving material selection

SOLUTIONS

Conclusion

- In optimizing cables the designer considers:
 - Insertion loss at the highest relevant frequency
 - Other electrical performance parameters to achieve system performance targets
 - Mechanical properties
 - Fire performance
 - Cost
- As the relevant frequency range increases, the relative importance of material loss increases thus favoring better materials in the optimization
- As we extend Cat-6 to 625 MHz, tightening the insertion loss specification to Cat-7 is a very cost effective way to improve system performance