Latency Considerations for 10GBase-T PHYs

Shimon Muller Sun Microsystems, Inc.

IEEE 802.3an Task Force March 16, 2004 Orlando, FL

Outline

- Introduction
- Issues and non-issues
- PHY Latency in The Big Picture
- Observations
- Summary and Recommendations

IEEE 802.3an Task Force	2
10GBase-T	

Why is PHY Latency an Issue for 10GBase-T

- In the past, PHY latency for Ethernet was driven by bit-budget requirements of CSMA/CD
 - Determines the physical span of the Ethernet network
 - Latency requirements are very tight
- IO-Gigabit Ethernet is the first standard that does not support CSMA/CD
 - Latency requirements can be substantially relaxed
 - Allows for useful implementation tradeoffs
- Caution needs to be exercised when selecting the maximum allowable latency for the 10GBase-T PHY
 - **Some network applications that run over Ethernet are latency-sensitive**
 - May suffer performance degradation if the PHY latency becomes significant

 IEEE 802.3an Task Force	3
10GBase-T	

When is Latency Not a Problem

- Support for Pause flow control
 - Rarely used
 - Not a very popular (or useful) protocol
 - At 10Gb/s speeds the size of the flow control buffers is already large
 - If implemented, is probably already off-chip
- Network applications that mostly use bulk data transfers
 - Backups, file serving, etc.
- Network applications (bulk data or transactional) that use lots of lowthroughput connections
 - Web servers, some databases, etc.
- Pipelining and parallelism hide the latency for above applications

IEEE 802.3an Task Force	4
10GBase-T	

When is Latency a Problem

- Applications that have a significant transactional network traffic profile
 - Message-based and/or request-response traffic patterns
 - Clustering, HPCC, OLTP, etc.
 - High-throughput connections where bulk data transfers are typically preceded by message exchanges
 - Most databases (Oracle), etc.
- For above applications latency directly affects performance
- Relatively few connections do not lend themselves well for pipelining

IEEE 802.3an Task Force

10GBase-T

Additional Latency Requirements

- Ethernet has never been considered a low-latency interconnect
 - Mostly due to overheads incurred above the Ethernet sublayer
- However:
 - Physical layers tend to be leveraged between various interconnect technologies
 - Fiber Channel, InfiniBand, PCI-Express, etc.
- A low latency 10GBase-T PHY will have a broader market potential

IEEE 802.3an Task Force	6
10GBase-T	

Networked Systems' Latency Components

- Protocol stack and OS
 - In the lower 10s of microseconds in each direction
 - End-to-end: ~2x
 - Will continue to come down in the future
 - Used to be in the 100s of microseconds
 - Processors are getting faster
 - More efficient network traffic processing in the OS
 - Hardware hooks to speed up packet processing
- Server memory and I/O subsystem
 - Up to several microseconds per packet (multiple accesses)
 - NUMA effects, etc.
 - I/O bridge latencies
 - End-to-end: 2x
 - Will get much better in the future
 - Modern systems are already capable of minimizing this latency
 - New NIC architectures will be able to hide most of it

IEEE 802.3an Task Force 7 10GBase-T

Networked Systems' Latency Components

- NICs and switches
 - Up to 1.2 microseconds per h/w component
 - Most implementations use store-and-forward
 - End-to-end: 3x
 - For latency sensitive applications cut-through is an option for both NICs and switches
- Cable delay
 - Up to 0.5 microseconds per hop
 - End-to-end: 2x
 - The vast majority of links in future datacenters will be shorter than 100m
 - Blade and rack systems

 IEEE 802.3an Task Force	8
10GBase-T	

Observations

- **Goal:**
 - Pick a number for 10GBase-T PHY latency such that it is proportionally insignificant in the overall system in the foreseeable future
- Latency consideration space:
 - Ideally, the PHY latency should be on the order of 10s of nanoseconds
 - Will accommodate all Ethernet and non-Ethernet applications in the foreseeable future
 - PHY latency on the order of 100s of nanoseconds is acceptable
 - Will accommodate most Ethernet and some non-Ethernet applications
 - PHY latency should not exceed 1 microsecond
 - May start affecting Ethernet over TCP/IP application performance in the foreseeable future

 IEEE 802.3an Task Force	9
10GBase-T	

10

Observations (Continued)

Trade-offs:

- From a system perspective, only end-to-end latency matters (Rx+Tx)
 - Can be budgeted asymmetrically
- Given the choice between latency vs. complexity/power/cost, latency should take precedence
 - Moor's Law will eventually take care of the latter but not of the former
- Given the choice between latency vs. UTP cable length, cable length should take precedence

IEEE 802.3an Task Force

10GBase-T

• In the short term support for installed cabling is more important

Summary and Recommendations

- Relaxing latency requirements for the 10GBase-T PHY does not come for free
 - Eventually may start affecting some application performance
 - May also reduce market potential
- Evaluate proposals in the context of observations and trade-offs presented
- Make final determination based on the "bang for the buck" trade-off

 IEEE 802.3an Task Force	11
10GBase-T	

That's All, Folks!

shimon.muller@sun.com

IEEE 802.3an Task Force

March 16, 2004

Orlando, FL

We make the net work.