G. Zimmerman, SolarFlare

Supporters

- Rick Rabinovich, Spirent Communications
- Dan Dove, HP
- Joel Goergen, Force 10 Networks
- Chris DiMinico, MC Communications
- Mike Bennett, Lawrence Berkeley Labs
- Michael Laudon, Force 10 Networks

Outline

- Overview
- Baud Rate: Info. Bits/Baud
- Equalization
- FEC/Trellis Coding
- Launch Power Backoff

Overview: Key Choices to Make

- Line coding
- Starts with baud rate (bandwidth)
- Exact \# levels of PAM tied to FEC choice
- May requires overhead for MAC control symbols
- Depends on coding
- FEC choice \& partition
- Includes both line coding \& partition
- Launch voltage
- Power consumption/Noise immunity tradeoff
- EMI constraint
- Power backoff for short lines

Overview: Elements Considered

- Channel models
- 55m Class E Objective:
- Cabling ad hoc IL, NEXT, FEXT \& RL models (http://www.ieee802.org/3/10GBT/public/material/10GBASET_Cat6_Model.zip)
- Class E ad hoc ANEXT model, Class E ISO proposal (15 dB/decade)
- 100m Class E+ Objective:
- Class E ad hoc IL, NEXT, FEXT \& RL models
- Proposals from TR42, ISO, and $3^{\text {rd }}$ parties
- EMI models
- EMI radiative transfer function derived from measurements presented to IEEE 10GBASE-T Study Group
- Component effects
- Magnetics bandwidths
- Timing recovery effects
- Info bits/baud - determines baud rate
- Based on Optimal DFE signal processing

Baud Rate: Info bits/baud (/pair)

- Determines necessary \& used bandwidth
- Performance, Power \& EMI Constrained
- DFE systems generally have a unique optimum
- Performance vs. baud rate on DFE channels is not identical to AWGN channels
- Rate loss is channel dependent
- (Rate loss in DFEs under "pinch off" conditions: ref. T1E1.4/97-241)
- Optimal DFE Margin (Salz) normalized to bits/baud:
- Uncoded Margin = -10*log10(Salz_MSE)Capacity_SNR+12.27dB
- Capacity SNR = 10* $\log 10\left(2^{\wedge}\left(2^{*}\right.\right.$ bits/baud/pair) -1$) \mathrm{dB}$

Baud Rate: 55m Class E Ad Hoc Model

- Very shallow optimum
- ANEXT Model exhibits <10dB/decade ANEXT slope

Uncoded DFE Margin vs. bits/baud/pair

Baud Rate: 55m Class E with 15dB / decade ANEXT model

- Optimum shifts towards 3 bits/baud \& steepens
- ANEXT Model based on presentations
- Conforms with data(hayes_1_0303.pdf, abughalazeh_1_0903.pdf)
- ANEXT Loss $=47-15 \log 10(f / 100)+2.5 \mathrm{~dB}$ (limit line adj)

Received Residual PSDs

Uncoded DFE Margin vs. bits/baud/pair

G. Zimmerman

SolarFlare Communications

Baud Rate: 100m Class E+ Example

- DFE Margin vs. info bits/baud strongly favors lower baud rates
- ANEXT Loss $=\mathbf{6 0 - 1 5}{ }^{*} \log 10(f / 100)+2.5 \mathrm{~dB}$ (limit line adj.)

Uncoded DFE Margin vs. bits/baud/pair

Baud Rate: EMI

- Used Field Radiated EMI measurements to estimate transmit PSD within FCC Class A
- Issues emerge above 500 MHz

Other Components

- Magnetics performance falls off beyond 500 MHz
- Adversely effects noise susceptibility \& EMI in addition to received SNR

10GBTT3 (with CMC)

- Timing jitter degrades SNR as baud rate increases (10*log10(fb1/fb2) relative loss in ADC quant noise PSD)

Baud Rate: Conclusions

- Choice of info bits/baud (baud rate) is a function of tradeoffs in:
- Long-line Performance
- ANEXT Robustness
- Meeting EMI
- Other component effects (e.g., Magnetics, timing)
- 3 bits/baud/pair is within 1 dB of optimum point for DFE SNR for all cases, and closer on hard cases
- 3 bits/baud/pair allows transmit PSD to roll off before 500 MHz
- Meets EMI, aligns with magnetics rolloff

Equalization: Tomlinson-Harashima

- Alleviates DFE error propagation in coded systems
- Cost is large amplitude "dither" element added to signal
- Transmit power penalty is small for large \# PAM levels
- Problems:
- Dither couples through NEXT, FEXT \& Echo paths
- High PAR \& extra dynamic range increases complexity
- Incompatible with shaping gain
- Requires tight circuit timing loop for feedback filter

Equalization: Precoded DFE

- Adaptive Linear precoding can shape DFE response to minimize error propagation
- Small transmit power penalty for preemphasis
- 10GBASE-T not generally transmit power limited
- Can be combined with other transmit filtering
- Can be combined with constellation shaping gain
- Feedforward structures minimize circuit timing issues

Equalization: Precoded DFE

- Precoder coefficients trained at startup to adapt to varying line lengths
- Max DFE feedback coefficient can be constrained < . 25
- DFE can be shaped to avoid catastrophic error propagation

FEC/Trellis coding: Latency

- Applications show need for lower latency codes
- Distributed computing, clustering require capability for low latency operation
- Includes propagation, code and signal processing latency
- Long lines mask PHY latency (propagation delay)
- Generic Ethernet places no hard requirement on 10GBT
- Legacy of the fact that 802.3ae was engineered for multi-km links (light time > 5 usec)
- Previous Ethernet has not stated latency as a requirement
- High latency codes PERMANENTLY bar technical innovation from achieving low latency operation
- Additional coding gain can be achieved by layering an outer code, if necessary, on long lines without impairing minimum PHY latency on shorter lines

Code Proposal: 4D-4W-Trellis Code

- 4D (across pairs) PAM-10 with 4-way time-interleave and constellation shaping
- Advantages
- Meets 3 bits/baud information rate
- Encodes control symbols into modulation, avoiding rate loss
- Provides for minimal latency operation (<< .25usec)
- Provides for constellation shaping gain (0.64 dB)
- 4-way interleave allows lower-rate decoder clocking
- Interleave mitigates noise correlation effects
- Interleave mitigates error propagation effects
- Low complexity hardware encoding \& decoding
- Allows concatenation for layering block FEC if desired for improved impulsive noise or long line performance

Line Code Proposal: 4D-4W-PAM10

- 8st 4D Ungerboeck code used in 1000BASE-T
- 2^13 possible encoded symbols
- 10,000 constellation points
- Remaining 1808 points can be used for control symbols
- 4 Way time interleaving, code is 4D across pairs
- Balanced constellation
- No polarity scrambler required
- Shaped constellation (0.64 dB shaping gain)

$-\mathbf{9}$	$\mathbf{- 7}$	$\mathbf{- 5}$	$\mathbf{- 3}$	$\mathbf{- 1}$	$\mathbf{+ 1}$	$\mathbf{+ 3}$	$\mathbf{+ 5}$	$\mathbf{+ 7}$	$\boldsymbol{+ 9}$
512	896	896	896	896	896	896	896	896	512

Table 1: 1D PAM Level Rate of Occurrence in the 4D Mapping (8192 points)

4D-4Way PAM-10 Code Performance

Launch Power Tradeoffs

- Launch power < 10 dBm due to EMI constraints
- Long line launch power > 6 dBm due to 1000BASE-T ANEXT constraints
- Negotiated launch power backoff
- Widely used in deployed DSL standards to mitigate asymmetric link near/far problem
- Lines less than 50m
- Negotiated at Startup, based on SNR and/or attenuation
- Minimum backoffs to be specified in the standard

Baud Rate Proposal

- Motion \#1: That 10GBASE-T baseline baud rates consistent with 3 information bits/baud/pair

Coding proposal

- Motion \#2: That 10GBASE-T adopt as a 3 bits/baud/pair 4D-4Way PAM-10 code with integrated control symbols

Power Backoff Proposal

- Motion \#3: That 10GBASE-T adopt a powerbackoff mechanism adapted on startup for use on shorter lines - levels and metrics TBD.

Backup Slides

Relation of Rate Loss in DFE systems under pinch-off

- Optimum DFE Result:

$$
\begin{aligned}
& S N R(d B)=10 * \log 10\left[\exp \left(\frac{1}{f b a u d} \int_{0}^{B} \ln (1+f-S N R(f)) d f\right)\right] \\
& \left.=\frac{10}{f b a u d} \log 10(\exp (1)) * \int_{0}^{B} \ln \left(1+f_{-} S N R(f)\right) d f\right)
\end{aligned}
$$

- When f_SNR(f) is small for $\mathrm{f}>$ fbaud, increasing the baud rate does not change the value of the integral as in an AWGN channel

ANEXT Robustness: Variability of Required Channel Capacity with Constant SNR Constraint

ref: TR42.7-04-02-012

- ANEXT = Y +
$15^{*} \log 10(f / 100)$, where Y is adjusted to produce target receive SNR
- Channel contains 4 connectors + 10 m patch cords; length adjusted with horizontal cable span only
-Target SNR includes
- BER = 10e-12
- 5.5 dB coding gain
- 3 dB margin
- Impairments (Class E):
- Echo $=55 \mathrm{~dB}$
- NEXT $=40 \mathrm{~dB}$
- FEXT $=25 \mathrm{~dB}$
- Noise $=-150 \mathrm{dBm} / \mathrm{Hz}$
- Transmit power $=8 \mathrm{dBm}$

ANEXT Robustness: Value of ANEXT Coupling Constant (Y) with Constant SNR Constraint

- ANEXT = Y +

15*log10(f/100), where Y is adjusted to produce target receive SNR

- Channel contains 4 connectors + 10 m patch cords; length adjusted with horizontal cable span only
- Target SNR includes
- BER = 10e-12
- 5.5 dB coding gain
- 3 dB margin
- Impairments:
- Echo $=55 \mathrm{~dB}$
- NEXT $=40 \mathrm{~dB}$
- FEXT = 25 dB
- Noise = -150 dBm/Hz
- Transmit power $=8 \mathrm{dBm}$

Error Propagation Performance

Coding Description: Encoder

Coding Description: Trellis Diagram

Baud Rate: 55m Class E with split ANEXT model

- Optimum shifts towards 3 bits/baud \& steepens
- Class E IL
- ANEXT Loss $=49-X^{*} \log 10(f / 100)(X=15, f>100, X=10, f<=100)$

Uncoded DFE Margin vs. bits/baud/pair

G. Zimmerman

SolarFlare Communications

Baud Rate: 100m Class E+ Example

- DFE Margin vs. info bits/baud strongly favors lower baud rates (Class E IL)
- ANEXT Loss $=64-X^{*} \log 10(f / 100)(X=15, f>100, X=10$, $\mathrm{f}<=100$)
Received Residual PSDs

Uncoded DFE Margin vs. bits/baud/pair

G. Zimmerman

SolarFlare Communications

Baud Rate: 100m Class E+ Example

- DFE Margin vs. info bits/baud strongly favors lower baud rates (Class F IL)
- ANEXT Loss $=62-X^{*} \log 10(f / 100)(X=15, f>100, X=10$, $\mathrm{f}<=100$)
Received Residual PSDs

Uncoded DFE Margin vs. bits/baud/pair

