10GBASE-T

Cable characteristics, front-end solutions, and precoders

IEEE P802.3an Task Force Atlanta, March 22-24, 2005

Gottfried Ungerboeck Scott Powell

^{Connecting} everything[™]

Contents

Cabling characteristics

- Strive for clarity and concise description
- Dependence of PSANEXT on cable length corrected
- Proposal: adopt proposed description

Transmitter front-end solutions

- Discussion of "baseline" approach and "preferred" approach
- Proposal: adopt transmit PSD with spectral nulls at f = 0 and 400 MHz and tighter tolerances than in Draft 1.4, Sec. 55.5.6

Decision-point SNR and set of fixed precoder functions

- Study sensitivity of DP-SNR to cable type, cable length, and small set of fixed FIR and IIR precoders
- Proposal: adopt three fixed IIR precoding responses "short", "medium", and "long" as a baseline set of fixed precoding responses.

^{Connecting} everything[™]

Cabling characteristics

Strive for more clarity and conciseness

Connecting everything[™]

10GBASE-T cabling characteristics: proposed description

 $\begin{array}{ll} \hline \label{eq:cable insertion loss (IL_{CABLE}) --> squared magnitude of cable transfer function} & f \ in \ MHz, \ \ell \ in \ meter \\ IL_{CABLE}(f) = 1.05 \left(ILa \ \sqrt{f} + ILb \ f + ILc \ \sqrt{f} \right) \ [dB/100m] \ \rightarrow \ \left| G_{CABLE}(f, \ell) \right|^2 = 10^{-(\ell/100) \times IL_{CABLE}(f)/10} \\ \hline \ Insertion \ loss \ of \ four \ connectors \ (IL_{4} \ CONN) \ --> \ squared \ magnitude \ of \ link-segment \ transfer \ function \\ IL_{4CONN}(f) = 4 \times 0.02 \ \sqrt{f} \ [dB] \ \rightarrow \ \left| G_{LINK \ SEG}(f, \ell) \right|^2 = \left| G_{CABLE}(f, \ell) \right|^2 \times 10^{-IL_{4CONN}/10} \\ \hline \ Power-sum \ ANEXT \ loss \ (PSL_{ANEXT}) \ --> \ power-sum \ ANEXT \ coupling \ function \\ \hline \end{array}$

 $PSL_{ANEXT}(f) = \begin{cases} X1 - 10 \log_{10}(f/100) & 1 \le f \le 100 \\ X1 - 15 \log_{10}(f/100) & 100 \le f \le 500 \end{cases} [dB] \rightarrow C_{PSANEXT}(f, \ell) = 10^{-PSL_{ANEXT}(f)/10} \times \left(\frac{1 - |G_{CABLE}(f, \ell)|^4}{1 - |G_{CABLE}(f, \ell)|^4}\right)$

Power-sum equal-level AFEXT loss (PSL_{ELAFEXT}) --> power-sum AFEXT coupling function

$PSL_{ELAFEXT}(f) = X2 - 20 \log_{10}(f/100) \text{ [dB]} \rightarrow$	→	$C_{PSAFEXT}(f, \ell) = 10^{-PSL_{ELAFEXT}(f)/10}$	$^{0} \times (\ell / 100) \times G_{CABLE} $	$\left {{\left {{\left({{{\rm{f}},\ell } \right)}} \right }^2}} \right ^2$	
---	----------	--	--	---	--

Cabling	Max. cable length	IL at 250 MHz	ILa	ILb	ILc	PSANEXT const_avg X1	PSELAFEXT const_avg X2
Cat 6 Class F	55 m 100 m	20.3 dB	1.82	0.0169	0.25	47 + 2.5 dB	33.6 + 2.5 dB 37 + 2.5 dB
Class F*	100 m	33.8 dB	1.80	0.0109	0.20	$60 + 2.5 \mathrm{dB}$	$37 + 2.5 \mathrm{dB}$ $37 + 2.5 \mathrm{dB}$

Connecting

everything[™]

* = augmented Cat 6

Derivation of expected NEXT coupling function

The transfer function from transmitted signal to received NEXT signal is given by

$$G_{N}(f,\ell) = \frac{U_{N}(f,x=0)}{U_{T}(f,x=0)} = \int_{x=0}^{\ell} j2\pi f c_{N}(x) e^{-2x\gamma(f)} dx ,$$

where $c_N(x)$ is a real-valued spatial function determining the NEXT coupling between cable pairs, and $\gamma(f)$ is the complex-valued propagation function of the cable. We call the expected squared magnitude of $G_N(f, \ell)$ the *expected NEXT coupling function*:

$$C_{N}(f,\ell) = E\left\{ \left| \frac{U_{N}(f,x=0)}{U_{T}(f,x=0)} \right|^{2} \right\} = \int_{x_{1}=0}^{\ell} \int_{x_{2}=0}^{\ell} 4\pi^{2} f^{2} E\left\{ c_{N}(x_{1})c_{N}(x_{2})\right\} e^{-2x_{1}\gamma(f)} e^{-2x_{2}\overline{\gamma}(f)} dx_{1} dx_{2}$$

For random white Gaussian coupling (WGC)

$$E\{c_N(x)c_N(x+y)\} = C_N^0\delta(y)$$
.

Let $\operatorname{Re}\{\gamma(f)\} = \gamma_R(f)$. Then

$$C_{N}(f,\ell) = 4\pi^{2}f^{2}C_{N}^{0}\int_{x=0}^{\ell}e^{-4x\gamma_{R}(f)}dx = \frac{\pi^{2}f^{2}C_{N}^{0}}{\gamma_{R}(f)}\left(1 - e^{-4\ell\gamma_{R}(f)}\right) = C_{N}(f,\infty)\left(1 - \left|G_{C}(f,\ell)\right|^{4}\right).$$

BROADCC

Source: G. Ungerboeck, private notes, ca. 1995

Connecting everything[™]

10GBASE-T cabling characteristics: Cat 6

IEEE P802.3an Mar 2005 Plenary

10GBASE-T cabling characteristics: Class E

10GBASE-T cabling characteristics: Class F

IEEE P802.3an Mar 2005 Plenary

Section 55.7 can be improved by presenting cable / link attenuation-related properties first by <u>length-independent "loss"</u> quantities in dB, e.g.,

```
IL_{CABLE}(f), IL_{4CONN}(f), ... PSL_{ANEXT}(f), PSL_{ELAFEXT}(f) ...
```

and then expressing <u>length-dependence</u> in the corresponding squared-magnitude or power-coupling functions, e.g.,

 $|G_{CABLE}(f,L)|^2, \dots C_{PSANEXT}(f,L), \dots$.

All cable-type dependent (Cat 6, Class E, Class F) parameters can be given in a single table, as has been shown.

Transmitter front-end solutions

"Baseline" approach and "preferred" approach

IEEE P802.3an Mar 2005 Plenary

Connecting

evĕrything™

Transmitter front-end: "baseline" approach

No digital filtering, T-spaced DAC, front-end filter with frequency-dependent input impedance Z_I and constant output impedance R

Transmitter front-end: "preferred" approach

IEEE P802.3an Mar 2005 Plenary

Transformer equivalent circuit

IEEE P802.3an Mar 2005 Plenary

Connecting

evĕrything™

Baseline approach: analog front end

Preferred approach: analog front end

Preferred approach: digital TX filter & interpolator

Connecting

16

Preferred approach: digital & analog front-end

IEEE P802.3an Mar 2005 Plenary

Preferred approach: interpolation coefficients

BROADCOM

IEEE P802.3an Mar 2005 Plenary

Connecting everything[™]

Comparison: baseline approach and preferred approach

Connecting everything[™] BROADCOM

Preferred approach: return loss

Connecting everything[™]

Proposed transmit PSD specification

IEEE P802.3an Mar 2005 Plenary

Connecting

Transmitter front-end solutions: discussion & proposal

- Tighter TX PSD specification is needed than currently provided in Draft 1.4 in order to use transmit signal power efficiently, permit operation with a few fixed precoders, and generally facilitate interoperability.
- Excess bandwidth wastes signal energy and leads to sampling phase dependence in the receiver. Hence: ≈zero excess bandwidth with spectral null at 1/2T is desired; also there shall be a spectral null at dc.
- To achieve the desired TX PSD characteristics, digital filtering and 2x oversampling is needed. However, this leads to higher PAR.
- Without digital filtering and oversampling, substantial analog filtering must be used. Non-constant filter input impedance causes a PAR problem, too!
- With digital filtering, oversampling, and trivial analog filtering, the PAR-related problem appears to be comparable, and at least is not significantly worse.

Connecting everything™

Decision-point SNR versus cable length and precoder functions

Towards set of fixed IIR precoder functions "short", "medium", "long"

Connecting everything™

DP-SNR versus cable length: Class E

IEEE P802.3an Mar 2005 Plenary

IEEE P802.3an Mar 2005 Plenary

Precoder function optimized for Class E, 20m: "short"

Precoder function optimized for Class E, 55m: "medium"

Precoder function optimized for Class E, 90m: "long"

DP-SNR versus cable length: Class E

IEEE P802.3an Mar 2005 Plenary

IEEE P802.3an Mar 2005 Plenary

DP-SNR versus cable length: Cat 6

IEEE P802.3an Mar 2005 Plenary

IEEE P802.3an Mar 2005 Plenary

DP-SNR and precoders: discussion & proposal

- For Cat 6, Class E, and Class F cables, we found three precoders sufficient to approach *Salz* performance to within 1 dB in all cases, provided the TX PSD is well defined.
- The FIR responses "short", "medium", and "long" can accurately be approximated by IIR responses with three zeros and three poles. This causes only fraction-of-dB DP-SNR losses.
- Low-order IIR responses lead to significant hardware savings.
- Proposal: adopt the IIR responses "short", "medium", and "long" as baseline set of fixed precoding responses.
- Further studies of DP-SNR sensitivity under various link segment conditions are needed.

Connecting everything[™]