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PAM signal requirement at BER = 10PAM signal requirement at BER = 10--1212

33.818104054PAM12

32.218334163PAM10

30.2410005003PAM8

26.0512506252PAM5

24.0015607802PAM4
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SNR = 6log2(M) + Gap – Coding_Gain + Margin

Gap = 12.25dB   Coding_Gain = 6dB   Margin = 6dB
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Channel Capacity for BW=625 MHzChannel Capacity for BW=625 MHz
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Transmitter Assumptions for Transmitter Assumptions for 
Stated PerformanceStated Performance

YES (Critically damped 2nd

order at 625 MHz)
Analog transmit filter

2VppMax transmit launch voltage (differential)

1VTransmit peak voltage

YES (1000BASE-T like)Digital Transmit Filter

10-bitAssumed DAC resolution

1250 MHzAssumed DAC speed

POSSIBLETransmitter Equalization

1250 MS/sSymbol Rate

TCMFEC Code

PAM5Modulation
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Receiver Assumptions for Stated Receiver Assumptions for Stated 
PerformancePerformance

5VppMaximum voltage on PHY side of transformer

-150 dBm/HzAssumed additive Gaussian noise of receiver

4th orderAssumed analog receive filter prior to ADC

20 dBHow much echo cancellation required prior to ADC?

7-bitMin required resolution of ADC

1250 MS/sAssumed ideal ADC speed

DFE + FECAssumed equalization approach & parameters

80Assumed FEXT canceller length

180Assumed NEXT canceller length

760Assumed ECHO canceller length 
(assumes no echo cancellation prior to ADC)

65 dBAssumed ECHO suppression
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Analog Front End (AFE) modelAnalog Front End (AFE) model
for DSP Solutionfor DSP Solution
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AAF can also provide partial equalization/cancellation in analogAAF can also provide partial equalization/cancellation in analog
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• 2 Vp peak-to-peak PAM-M launch signal

• Analog differential blocks have only odd non-linearity

• Analog blocks are characterized by:

Y = ββX(1+ααX2)

• ββ block gain

• αα 3rd order non-linearity coefficient

Assumptions for AFE Linearity Assumptions for AFE Linearity 
AnalysisAnalysis
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AFE Linearity Requirement AFE Linearity Requirement 
(Normalized) vs. Line(Normalized) vs. Line--SignalSignal

1.305.742.000PAM-17

(Cicada 1/00)

2.416.102.000PAM-10

(MRVL/BRCM)

1.0010.003.134PAM-10
(Solar Flare)

6.90

|αα|

(%)

7.002.000PAM-5
(Plato Labs)
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BER BER vsvs NonNon--linearitylinearity
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NonNon--linearity Analysis Conclusionslinearity Analysis Conclusions

• For a given PAM-M line-signal the 3rd order non-
linearity coefficient (αα) inversely depends on M and  
square of peak launch signal

• Smaller the αα higher the AFE complexity (area and 
power)

• 3.134Vp-p PAM-10 line-signal requires AFEs that are 
5.7X more linear than that of 2Vp-p PAM-5

• Let’s maintain 2Vp-p launch voltage (used in 100BASE-T 
and 1000BASE-T)

• Let’s maintain PAM-5 line-signal (used in 100BASE-T2 
and 1000BASE-T)
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AFE Power & SNDRAFE Power & SNDR
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The power consumption according to (65nm CMOS):
http://www.ieee802.org/3/10GBT/public/nov03/10GBASE-T_tutorial.pdf

PPTOTALTOTAL=8=8--16W (AFE) + 2.2W (DSP)=1016W (AFE) + 2.2W (DSP)=10--18W18W

AFE power is related to its SNDR
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Supply Current vs. SNDR for a gSupply Current vs. SNDR for a gmm--C C Biquad Biquad 
Filter [1]Filter [1]
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Supply Current/tap vs. SNDR for a Rotating Supply Current/tap vs. SNDR for a Rotating 
MUX Analog Equalizer/Canceller [2]MUX Analog Equalizer/Canceller [2]
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Examples of Prior ArtExamples of Prior Art

70 mWSNR=22.1dB(PR4)

SNR=25.8dB(EPR4)
1.2µµm170 Mb/s analog FIR 

equalizer [2]

1.27 WENOB=7.26-
bit@800MHz

0.18µµm8-bit, 1.6GS/s folding 
CMOS ADC [6]

210 mWTHD=1%@455mVpp

BW= 30-100 MHz 
0.25µµmContinuous-time 7th

order, gm-C filter [5]

110 mWINL<0.2LSB 
DNL<0.15LSB

0.35µµm10-bit, 1GS/s Current-
Steering CMOS DAC [4]

PowerKey Spec.ProcessBlock
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Power Consumption of an OTA in Different Power Consumption of an OTA in Different 
CMOS Processes With Constant SNDR [3]CMOS Processes With Constant SNDR [3]

OTA: The most 
common analog 
building block

+

-
OTA

Process Process 
migration does migration does 
not not necessarilynecessarily
result in lower result in lower 
power for AFEpower for AFE
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Assembly Cost vs. 1000BASEAssembly Cost vs. 1000BASE--T T 
PHY PackagePHY Package

Assembly Cost vs Power & IO
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Implementation FeasibilityImplementation Feasibility

• 10Gb/s over provided channel models

• Single-chip CMOS implementation (0.13µm)

• PAM5 line-signaling

• 2Vpp launch voltage

• Low-power implementation

• Interface to MAC via XGMII
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