

10GBASE-T PAM5 Line Signaling

Joseph N. Babanezhad

jobaba@platolabs.com

(408)-379-5115

Samir Thosani

samir@platolabs.com

Pirooz Hojabri

pirooz@platolabs.com

PAM signal requirement at BER = 10⁻¹²

Line Code	bits/Baud	Signal bandwidth (MHz)	Baud rate (MS/s)	Detection SNR (dB)
PAM4	2	780	1560	24.00
PAM5	2	625	1250	26.05
PAM8	3	500	1000	30.24
PAM10	3	416	833	32.21
PAM12	4	405	810	33.81

SNR = 6log₂(M) + Gap – Coding_Gain + Margin

Gap = 12.25dB Coding_Gain = 6dB Margin = 6dB

Channel Capacity for BW=625 MHz

	Capacity (Gbps)	Capacity (Gbps)	Capacity (Gbps)
	Power = 7 dBm	Power = 8 dBm	Power = 7 dBm
	NEXTcanc=50	NEXTcanc=40	NEXTcanc=40
	ECHOcanc=65	ECHOcanc=60	ECHOcanc=60
	FEXTcanc=50	FEXTcanc=30	FEXTcanc=30
Model #1	17.31	17.26	17.19
Model #2	18.38	18.38	18.37
Model #3	16.90	16.83	16.74

Transmitter Assumptions for Stated Performance

Modulation	PAM5
FEC Code	ТСМ
Symbol Rate	1250 MS/s
Transmitter Equalization	POSSIBLE
Digital Transmit Filter	YES (1000BASE-T like)
Assumed DAC resolution	10-bit
Assumed DAC speed	1250 MHz
Analog transmit filter	YES (Critically damped 2 nd order at 625 MHz)
Max transmit launch voltage (differential)	2V _{pp}
Transmit peak voltage	1V

Receiver Assumptions for Stated Performance

Assumed ECHO suppression	65 dB
Assumed ECHO canceller length	760
(assumes no echo cancellation prior to ADC)	
Assumed NEXT canceller length	180
Assumed FEXT canceller length	80
Assumed equalization approach & parameters	DFE + FEC
Assumed ideal ADC speed	1250 MS/s
Min required resolution of ADC	7-bit
How much echo cancellation required prior to ADC?	20 dB
Assumed additive Gaussian noise of receiver	-150 dBm/Hz
Assumed analog receive filter prior to ADC	4 th order
Maximum voltage on PHY side of transformer	5V _{pp}

Analog Front End (AFE) model for DSP Solution

AAF can also provide partial equalization/cancellation in analog

Assumptions for AFE Linearity Analysis

- 2 V_p peak-to-peak PAM-M launch signal
- Analog differential blocks have only odd non-linearity
- Analog blocks are characterized by:

$$Y = \mathbf{b}X(1 + \mathbf{a}X^2)$$

- **b** block gain
- **a** 3rd order non-linearity coefficient

AFE Linearity Requirement (Normalized) vs. Line-Signal

Line Code	Peak-to- Peak (V)	Launch Power (dBm)	a (%)
PAM-5 (Plato Labs)	2.000	7.00	6.90
PAM-10 (Solar Flare)	3.134	10.00	1.00
PAM-10 (MRVL/BRCM)	2.000	6.10	2.41
PAM-17 (Cicada 1/00)	2.000	5.74	1.30

BER vs Non-linearity

PAM5 (BW=625MHz, 2Vp-p) PAM10 (BW=416.66MHz, 2Vp-p) PAM10 (BW=416.66MHz, 3.134Vp-p)

May 2004

Non-linearity Analysis Conclusions

- For a given PAM-M line-signal the 3rd order nonlinearity coefficient (a) inversely depends on M and square of peak launch signal
- Smaller the a higher the AFE complexity (area and power)
- 3.134V_{p-p} PAM-10 line-signal requires AFEs that are 5.7X more linear than that of 2V_{p-p} PAM-5
- Let's maintain $2V_{p-p}$ launch voltage (used in 100BASE-T and 1000BASE-T)
- Let's maintain PAM-5 line-signal (used in 100BASE-T2 and 1000BASE-T)

AFE Power & SNDR

The power consumption according to (65nm CMOS):

http://www.ieee802.org/3/10GBT/public/nov03/10GBASE-T_tutorial.pdf

P_{TOTAL}=8-16W (AFE) + 2.2W (DSP)=10-18W

AFE power is related to its SNDR

Supply Current vs. SNDR for a g_m-C Biquad Filter [1]

Plato Labs

Supply Current/tap vs. SNDR for a Rotating MUX Analog Equalizer/Canceller [2]

May 2004

Examples of Prior Art

Block	Process	Key Spec.	Power
170 Mb/s analog FIR equalizer [2]	1.2mm	SNR=22.1dB(PR4) SNR=25.8dB(EPR4)	70 mW
10-bit, 1GS/s Current- Steering CMOS DAC [4]	0.35 m m	INL<0.2LSB DNL<0.15LSB	110 mW
Continuous-time 7 th order, g _m -C filter [5]	0.25 m m	THD=1%@455mV _{pp} BW= 30-100 MHz	210 mW
8-bit, 1.6GS/s folding CMOS ADC [6]	0.18mm	ENOB=7.26- bit@800MHz	1.27 W

Power Consumption of an OTA in Different CMOS Processes With Constant SNDR [3]

OTA: The most common analog building block

Process migration does not <u>necessarily</u> result in lower power for AFE

Figure 1: Simulated typical Vdd-P relation for analog circuits: fixed topology, optimized settings, 60dB SINAD @ 15MHz; in 90, 120, 180 and 250nm CMOS. Reliability issues ignored for comparison reasons.

Assembly Cost vs. 1000BASE-T PHY Package

Implementation Feasibility

- 10Gb/s over provided channel models
- Single-chip CMOS implementation (0.13μm)
- PAM5 line-signaling
- $2V_{pp}$ launch voltage
- Low-power implementation
- Interface to MAC via XGMII

- [1] Y. P. Tsividis and J. O. Voorman, *Integrated Continuous-Time Filters*, IEEE PRESS 1992, pp.3-14
- [2] X. Wang and R. R. Spencer, "A low-power 170-MHz disctrete-time analog FIR filter," IEEE JSSC vol. 33, NO.3, March 1998 pp. 417-426.
- [3] A. J. Annema *et al*, "Designing outside rail constraints," in *ISSCC, Dig. Tech. Papers,* Feb. 2004, pp.134-135
- [4] A. V. Bosch, *et al*, "A 10-bit 1-Gsample/s Nyquist current-steering CMOS D/A converter," IEEE JSSC, March 2001, pp. 315-324
- [5] V. Gopinathan, *et al*, "Design considerations and implementation of a programmable high-frequency continuous-time filter and variable-gain amplifier in submicrometer CMOS," IEEE JSSC, Dec. 1999, pp. 1698-1707.
 - [6] R. Taft, et al, "A 1.8V 1.6GS/s 8b self-calibrating folding ADC with 7.26 ENOB at Nyquist frequency," in ISSCC, Dig. Tech. Papers, Feb. 2004, pp.252-253 and 526.