10GBASE-T PAM5 Line Signaling

Joseph N. Babanezhad
jobaba@platolabs.com
(408)-379-5115

Samir Thosani

samir@olatolabs.com
 Pirooz Hojabri

pirooz@platolabs.com

Plato Labs

PAM signal requirement at $\mathrm{BER}=10^{-12}$

Line Code	bits/Baud	Signal bandwidth (MHz)	Baud rate $(\mathrm{MS} / \mathrm{s})$	Detection SNR (dB)
PAM4	2	780	1560	24.00
PAM5	2	625	1250	26.05
PAM8	3	500	1000	30.24
PAM10	3	416	833	32.21
PAM12	4	405	810	33.81

SNR $=6 \log _{2}(M)+$ Gap - Coding_Gain + Margin
Gap $=12.25 \mathrm{~dB}$ Coding_Gain $=6 \mathrm{~dB} \quad$ Margin $=6 \mathrm{~dB}$

Channel Capacity for BW=625 MHz

	Capacity (Gbps) Power = 7 dBm NEXTcanc=50 ECHOcanc=65 FEXTcanc=50	Capacity (Gbps) Power $=8 \mathrm{dBm}$ NEXTcanc=40 ECHOcanc=60 FEXTcanc=30	Capacity (Gbps) Power $=7 \mathrm{dBm}$ NEXTcanc=40 ECHOcanc=60 FEXTcanc=30
Model \#1	17.31	17.26	17.19
Model \#2	18.38	18.38	18.37
Model \#3	16.90	16.83	16.74

Transmitter Assumptions for Stated Performance

Modulation	PAM5			
FEC Code	TCM			
Symbol Rate	$\mathbf{1 2 5 0}$ MS/s			
Transmitter Equalization	POSSIBLE			
Digital Transmit Filter	YES (1000BASE-T like)			
Assumed DAC resolution	10-bit			
Assumed DAC speed	1250 MHz			
Analog transmit fillter	Order at 625 MHz)	$	$	2V
:---				
Max transmit launch voltage (differential)				

Receiver Assumptions for Stated Performance

Assumed ECHO suppression	$\mathbf{6 5} \mathbf{~ d B}$
Assumed ECHO canceller length (assumes no echo cancellation prior to ADC)	$\mathbf{7 6 0}$
Assumed NEXT canceller length	$\mathbf{1 8 0}$
Assumed FEXT canceller length	$\mathbf{8 0}$
Assumed equalization approach \& parameters	DFE + FEC
Assumed ideal ADC speed	$\mathbf{1 2 5 0} \mathbf{~ M S / s}$
Min requilred resolution of ADC	$\mathbf{7 - b i t}$
How much echo cancellation required prior to ADC?	$\mathbf{2 0} \mathbf{~ d B}$
Assumed additive Gaussian noise of receiver	$\mathbf{- 1 5 0 ~ d B m / H z}$
Assumed analog receive filiter prior to ADC	$\mathbf{4 t h} \mathbf{~ o r d e r ~}$
Maximum voltage on PHY side of transformer	$\mathbf{5 V}$ pp

Analog Front End (AFE) model for DSP Solution

AAF can also provide partial equalization/cancellation in analog

Assumptions for AFE Linearity Analysis

- 2 V $_{\mathrm{p}}$ peak-to-peak PAM-M launch signal
- Analog differential blocks have only odd non-linearity
- Analog blocks are characterized by:

$$
Y=\beta X\left(1+\alpha X^{2}\right)
$$

- β block gain
- $\alpha \quad 3^{\text {rd }}$ order non-linearity coefficient

AFE Linearity Requirement (Normalized) vs. Line-Signal

Line Code	Peak-to- Peak (V)	Launch Power (dBm)	$\|\alpha\|$ $(\%)$
PAM-5 (Plato Labs)	2.000	7.00	6.90
PAM-10 (Solar Flare)	3.134	10.00	1.00
PAM-10 (MRVL/BRCM)	2.000	6.10	2.41
PAM-17 (Cicada 1/00)	2.000	5.74	1.30

BER vs Non-linearity

—PAM5 (BW=625MHz, 2Vp-p) —PAM10 (BW=416.66MHz, 2Vp-p) —PAM10 (BW=416.66MHz, 3.134Vp-p)

Non-linearity Analysis Conclusions

- For a given PAM-M line-signal the $3^{\text {rd }}$ order nonlinearity coefficient (α) inversely depends on M and square of peak launch signal
- Smaller the α higher the AFE complexity (area and power)
- $3.134 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$ PAM-10 line-signal requires AFEs that are 5.7X more linear than that of $2 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$ PAM-5
- Let's maintain $2 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$ launch voltage (used in 100BASE-T and 1000BASE-T)
- Let's maintain PAM-5 line-signal (used in 100BASE-T2 and 1000BASE-T)

AFE Power \& SNDR

The power consumption according to (65nm CMOS):
htto://www.ieee802.org/3/10GBT/public/nov03/10GBASE-T tutorial.pdf

$$
P_{\text {TOTAL }}=8-16 W(A F E)+2.2 W(D S P)=10-18 \mathrm{~W}
$$

AFE power is related to its SNDR

$$
S^{2}{ }^{2}=\frac{S^{2}}{N^{2}{ }_{\text {AFE }}+D^{2}{ }_{A F E}+\Sigma R_{\text {impairment }}^{2}}
$$

Supply Current vs. SNDR for a g_{m}-C Biquad

 Filter [1]

TSMC
$0.13 \mu \mathrm{~m}$ CMOS
\rightarrow Series 1

Supply Current/tap vs. SNDR for a Rotating MUX Analog Equalizer/Canceller [2]

TSMC
$0.13 \mu \mathrm{~m}$ CMOS

- - Series 1

Examples of Prior Art

Block	Process	Key Spec.	Power
$170 \mathrm{Mb} / \mathrm{s}$ analog FIR equalizer [2]	$1.2 \mu \mathrm{~m}$	SNR=22.1dB(PR4) SNR=25.8dB(EPR4)	70 mW
10-bit, 1GS/s CurrentSteering CMOS DAC [4]	$0.35 \mu \mathrm{~m}$	$\begin{gathered} \text { INL<0.2LSB } \\ \text { DNL<0.15LSB } \end{gathered}$	110 mW
Continuous-time $7^{\text {th }}$ order, g_{m}-C filter [5]	$0.25 \mu \mathrm{~m}$	$\begin{aligned} & \text { THD }=1 \% @ 455 \mathrm{mV}_{\mathrm{pp}} \\ & \mathrm{BW}=30-100 \mathrm{MHz} \end{aligned}$	210 mW
8-bit, 1.6GS/s folding CMOS ADC [6]	$0.18 \mu \mathrm{~m}$	$\begin{aligned} & \text { ENOB=7.26- } \\ & \text { bit@800MHz } \end{aligned}$	1.27 W

Power Consumption of an OTA in Different CMOS Processes With Constant SNDR [3]

Figure 1: Simulated typical Vdd-P relation for analog circuits: fixed topology, optimized settings, 60dB SINAD @ 15MHz; in 90, 120, 180 and 250nm CMOS. Reliability issues ignored for comparison reasons.

OTA: The most common analog building block

> Process migration does not necessarily result in lower power for AFE

Assembly Cost vs. 1000BASE-T PHY Package

Implementation Feasibility

- 10Gb/s over provided channel models
- Single-chip CMOS implementation ($0.13 \mu \mathrm{~m}$)
- PAM5 line-signaling
- $2 \mathrm{~V}_{\mathrm{pp}}$ launch voltage
- Low-power implementation
- Interface to MAC via XGMII

References

[1] Y. P. Tsividis and J. O. Voorman, Integrated Continuous-Time Filters, IEEE PRESS 1992, pp.3-14
[2] X. Wang and R. R. Spencer, "A low-power 170-MHz disctrete-time analog FIR filter," IEEE JSSC vol. 33, NO.3, March 1998 pp. 417426.
[3] A. J. Annema et al, "Designing outside rail constraints," in ISSCC, Dig. Tech. Papers, Feb. 2004, pp.134-135
[4] A. V. Bosch, et al, "A 10-bit 1-Gsample/s Nyquist current-steering CMOS D/A converter," IEEE JSSC, March 2001, pp. 315-324
[5] V. Gopinathan, et al, "Design considerations and implementation of a programmable high-frequency continuous-time filter and variable-gain amplifier in submicrometer CMOS," IEEE JSSC, Dec. 1999, pp. 1698-1707.
[6] R. Taft, et al, "A 1.8V 1.6GS/s 8 b self-calibrating folding ADC with 7.26 ENOB at Nyquist frequency," in ISSCC, Dig. Tech. Papers, Feb. 2004, pp.252-253 and 526.

