PHY Proposal for 10GBASE-T: Encoding, Mapping & Framing

George Zimmerman & Brett McClellan - SolarFlare Communications

Supporters: Rick Rabinovich, Spirent Michael Laudon, Force 10 Networks Mike Bennett, Lawrence Berkeley National Laboratory Paul Kish - Nordx/CDT Shadi AbuGhazaleh-Hubbell Premise Wiring Sterling Vaden- Superior Modular Products Bernie Hammond - Krone

Outline

- Basic Formula
- Why PAM-10?
- 4D 8 State PAM-10 TCM
- Mapping
- Scrambler
- Framing
- Simulation Results
- Performance Comparison
- PHY Parameters
- Measured Performance
- Conclusion

Line Coding: Basic Formula

- Start with 1000BASE-T
- Take away half duplex / carrier sense
- Support 10Gbps Data Rate: Optimize baud rate for line
 - 8 bits / baud -> 12-bits / baud
 - PAM5 @ 125Mbaud -> PAM10 @ 833.33 Mbaud
- 4D 8-state TCM
 - Same scrambler as 1000BASE-T
 - Same encoder as 1000BASE-T
 - Take away the "packetized" TCM
 - No convolutional reset or mode switching
 - Same 4D mapping technique as 1000BASE-T
- Support 802.3 Clause 46
 - XGMII Frame Structure and Control

Why PAM10?

- Based on calculations from the channel impairments, the maximum channel capacity is achieved with a baud rate of around 800MHz.
- Minimal data framing complexity with byte oriented modulation
 - 2 byte/baud -> 625 Mbaud (1 dB equalization loss)
 - 1 bytes/baud -> 1.25 Gbaud (2.5-2.9 dB loss)
- 1.5 byte/baud -> 833.33 Mbaud
 - Hits the channel capacity sweet spot
 - Minimal additional framing complexity
- 4D PAM10 for Trellis Coded Modulation
 - Additional 2 levels per pair provide redundancy for FEC

Why PAM-10?: Optimal Baud Rate

- Solarsep7a_varlen simulations: Model 1
 - No ANEXT Canc., 100m Cat7 IL, Baseline ANEXT (62.5 dB at 100 MHz, split slope), Default Cancellation parameters
- 833 Mbaud = 3 bits/baud SNR = 29.4 dB
- Margin peak = 770 Mbaud, 0.12 dB better margin

4D 8-State PAM10 TCM

- 4D 8-state Ungerboeck code from 1000BASE-T
 - 12-bits -> 13 bits per baud
- Continuous Trellis Coding
 - Encoder runs on a continuous basis
 - No need to switch modes between Data and Idle
 - Idle and Control symbols are covered by TCM

4D PAM10 Mapping

- PAM10
 - { -9 -7 -5 -3 -1 +1 +3 +5 +7 +9 }
- 13-bits / baud
 - 2^13 = 8192 data symbols
 - 4D PAM10 has 10,000 constellation points
 - Remaining 1808 points are used for constellation shaping and control symbol mapping
- Constellation shaping
 - Eliminate any 4D points with two or more +/- 9's
 - 0.64 dB of shaping gain

1D PAM Level Rate of Occurrence in the 4D Mapping (8192 points)

-9	-7	-5	-3	-1	+1	+3	+5	+7	+9
512	896	896	896	896	896	896	896	896	512

4D PAM10 Data Symbol Mapping

- Parity + 2 MSB's (Sd_n12:10) select 1 of 8 subsets
- 10 LSB's select a point within the subset
 - Sd_n9 selects normal mapping or ESC code (+/- 9)
 - Sd_n8 selects X or Y primary subset
 - Sd_n7:0 selects a point within the subset
 - when Sd_n9 ==1, Sd_n7:6 selects on which pair the ESC code is transmitted
- Balanced constellation
 - No polarity scrambler is required
 - Remaining 4 LFSR outputs are used to scramble the 4
 additional data bits

4D PAM10 Partitioning

Control Symbol Mapping cont.

 Symbol Framer determines control symbol mapping

Control Symbol Mapping

- Map control characters into unused constellation
 - Map to 4D PAM10 symbols containing two +/- 9's
 - 4D Symbols fall within the subset selected by encoder
 - Symbols are DC balanced.

— E	xamples:	TXA	ТХВ	ТХС	TXD
	• START	+/- 5	+/- 9	+/- 5	+/- 9
	• TERMINATE	+/- 9	+/- 9	+/- 7	+/- 7
	• ERROR	+/- 1	+ <mark>/</mark> - 1	+/- 9	+/- 9
	·Q	+/- 1	+ <mark>/</mark> - 9	+/- 1	+/- 9
	• IDLE*	+/- 9	+/- 9	+/- 3	+/- 3

 Infrequent nature of control symbols allows shaping gain to be maintained

Side Stream Scrambler

1000BASE-T Scrambler

Т

Т

Data Framing

- Data bytes are taken in groups of six and parsed into 4 12-bit symbols
 - Every third byte is split in half

Data Framing cont.

Three XGMII transfers per two framing blocks

IDLE

- XGMII IDLE bytes are replaced with 4D PAM10
 trellis coded Idle symbols
 - Idle is differentiated from data by using double ESC symbols
 - *Average TX power is maintained by mixing in non-ESC symbols

START

- START (Start of Frame) moves into the prior/current symbol in the IPG
 - Data bytes are left unaffected

TERMINATE

- TERMINATE (End of Frame) moves into the next/current symbol in the IPG
 - Data bytes are left unaffected

Ordered Sets

- Q (Sequence) symbol moves into the prior/current symbol in the Idle stream
 - Data bytes are left unaffected

4D 8-State PAM10 Performance (Simulations: AWGN) SolarFlare PHY Coded PAM10 Performance

Relative Complexity Estimates

- Baseline Complexity: 4.7M gate equivalents 90nm
 - Based on existing (.13u), proven hardware design for 10GBASE-T on existing Cat6 for this proposal
 - Includes complexity for impairments from cabling configurations in the real world, but not in standards environments
 - Includes several complexity reductions for signal processing elements (estimated 6X reduction)
- Competitive Complexity:
 - Cancellers & equalizers:
 - Scale linearly with baud rate (optimistic), pessimistic would scale as the square of baud rate
 - Scale linearly with data word length optimistic "effective symbol" scaling (+2 bits) assumed for TH precoding, proposal would scale as output symbol (+6 bits)
 - Coding: LDPC estimates from seki_1_0304, slide 4 (2-3M gates); RS complexity from Ungerboeck verbal (500k gates)

Performance Comparisons, Model 1

 No ANEXT Cancellation, 100m Cat7 IL, Baseline ANEXT (62.5 dB at 100 MHz, split slope), Default Cancellation parameters

Uncoded DFE Margin Peak	-0.78	dB	770	MHz					
				,	Opt			dB	
	1e-12	Bits/		Baud	DFE		dB	from	
	SNR	sym/	Ovrhd	Rate	SNR at		from	DFE	Relative
Proposal	reqd	pair	for Ctl	(MHz)	rate	Margin	max	peak	Complexity
SF 4D-4W TCM PAM10	26.2	3	0.00%	833	29.36	3.16	-3.31	-0.12	1.000
Keyeye PAM-4	24	2	3.13%	1289	20.15	-3.85	-10.3	-3.1	0.773
Rao_Nov2003	19.9	2.683	7.30%	1000	25.52	5.62	-0.85	-2.01	1.875
Rao_Mar2004	19.9	2.683	<mark>3</mark> .13%	961	26.37	6.47	0	-1.16	1.817
Ter. 12-PAM (2048,1723)	23.8	3.182	5.00%	825	29.58	5.78	-0.69	-1.01	1.860
Ter. 12-PAM (1024,781)	22.8	3.029	3.00%	850	28.95	6.15	-0.32	-0.71	1.905
Powell 4DTCM+RS(2.66b/syn	21.4	2.66	3.13%	969	26.2	4.8	-1.67	-1.19	1.807
Ung. 4DTCM+RS(2.5775b/s)	19.9	2.578	3.13%	1000	25.52	5.62	-0.85	-1.36	1.863
Plato PAM-5	20.5	2	0.00%	1250	20.8	0.3	-6.17	-2.45	1.125

Performance Comparisons, Model 3

 No ANEXT Cancellation, 100m Cat6 IL, Baseline ANEXT (64.5 dB at 100 MHz, split slope), Default Cancellation parameters

Standards Code Performan									
Max Margin	6.07	dB							
Uncoded DFE Margin Peak	-0.87	dB	740	MHz					
					Opt			dB	
	1e-12	Bits/s		Baud	DFE		dB	from	
	SNR_r	ym/p	Ovrhd	Rate	SNR at	dB	from	DFE	Relative
Proposal	eq	air	for Ctl	(MHz)	rate	Margin	max	peak	Complexity
SF 4D-4W TCM PAM10	26.2	3	0.00%	833	29.13	2.96	-3.11	-0.2	1.000
Keyeye PAM-4	24.0	2	3.13%	1289	19.67	-4.33	-10.4	-3.3	0.770
Rao_Nov2003	19.9	2.68	7.30%	1000	25.07	5.17	-0.9	-1.22	1.870
Rao_Mar2004	19.9	2.68	3.13%	961	25.97	6.07	0	-0.92	1.820
Ter. 12-PAM (2048,1723)	23.8	3.18	5.00%	825	29.36	5.56	-0.51	-0.18	1.860
Ter. 12-PAM (1024,781)	22.8	3.03	3.00%	850	28.7	5.9	-0.17	-0.3	1.910
Powell 4DTCM+RS(2.66b/syr	21.4	2.66	3.13%	969	25.79	4.39	-1.68	-1	1.810

PHY Parameter Highlights

- ADC: 10 bits, 9 ENOB
- DAC: 10 bits, 9 ENOB
- Jitter: 4 psec RMS
- TX Power: 6 dBm (2.5-3Vpp for PAM-10, depends on measurement point)
- TX PSD: -80 dBm/Hz peak, with PAM spectrum
- Intrinsic latency: < 20 nsec
- TX equalization: none
- Margins w/noise, impairments & limits
 - Models 1,2,3 2.6, 2.9, 2.1 dB
- Power estimate (90nm): 8.1W

Measured Performance

- Laboratory IC transceiver results on Cat5e cabling
- Includes Jitter, A/D, EMI Ingress, and additive noise source

Conclusion

- PAM-10 833 Mbaud line coding proposal is based on proven 1000BASE-T technology with extensions to meet performance goals
- PAM-10 833 Mbaud 3 bits/baud proposal will meet the reach requirements
- PAM-10 833 Mbaud 3 bits/baud proposal balances complexity with performance
- PAM-10 833 Mbaud 3 bits/baud proposal has intrinsic latency to scale to meet future needs
- PAM-10 833 Mbaud 3 bits/baud proposal is the only complete solution to date with complexity proven in hardware

Motions

- Motion #1: Move that the 802.3an Task Force adopt a 10-level pulse amplitude modulation (PAM10) with a symbol rate of 833 Mbaud for D1.0 of Clause 55 as presented in (mcclellan_1_0504.pdf).
 - Moved By:
 - Seconded By:
 - Yes: No: Abstain:
- Motion #2: Move that the 802.3an Task Force adopt the 4D 8-State PAM10 TCM and 4D PAM10 Mapping for D1.0 of Clause 55 as presented in (mcclellan_1_0504.pdf).
 - Moved By:
 - Seconded By:
 - Yes: No: Abstain:
- Motion #3: Move that the 802.3an Task Force adopt the XGMII Frame Structure and Control for D1.0 of Clause 55 as presented in (mcclellan_1_0504.pdf).
 - Moved By:
 - Seconded By:
 - Yes: No: Abstain:

4D PAM10 Partitioning

- 1D values:{ -9, -7, -5, -3, -1, +1, +3, +5, +7, +9 }
- This set can be split into two subsets:

 $X = \{ -9, -5, -1, +3, +7 \}$ Y = { -7, -3, +1, +5, +9 }

- 2D 10X10 constellation: { (-9,-9), (-9,-7),, (+9,+7), (+9,+9) }
- We can divide this constellation into 4 subsets:

XX = { (-9,-9), (-9,-5),, (+7,+3), (+7,+7) } XY = { (-9,-7), (-9,-3), ..., (+7,+5), (+7,+9) } YX = { (-7,-9), (-7,-5), ..., (+9,+3), (+9,+7) } YY = { (-7,-7), (-7,-3), ..., (+9,+5), (+9,+9) }

4D PAM10 Partitioning cont.

- 4D 10X10X10X10 constellation: { (-9,-9,-9,-9), (-9,-9,-7), ..., (+9,+9,+7), (+9,+9,+9) }
- We can divide this constellation into 16 subsets: XXXX = { (-9,-9,-9,-9), (-9,-9,-9), -5),, (+7,+7,+7), (+7,+7,+7) } XXXY = { (-9,-9,-9,-7), (-9,-9,-9,-3),, (+7,+7,+7), (+7,+7,+7) }

YYYX = { (-7,-7,-7,-9), (-7,-7,-7,-5), ..., (+9,+9,+9,+3), (+9,+9,+9,+7) } YYYY = { (-7,-7,-7,-7), (-7,-7,-7,-3), ..., (+9,+9,+9,+5), (+9,+9,+9,+9) }

While the minimum distance between the points in the original 10X10X10X10 constellation was dmin=2, the distance between points within any of the sixteen subsets is dmin = 4.

....

4D PAM10 Partitioning cont.

 For the 4D 8-state trellis code we need only 8 sublattices. Therefore, we combine pairs of the subsets shown above to get 8 subsets, D0 to D7:

D0 = XXXX + YYYY D1 = XXXY + YYYX D2 = XXYY + YYXX D3 = XXYX + YYXY D4 = XYYX + YXXY D5 = XYYY + YXXX D6 = XYXY + YXYX D7 = XYXX + YXYY

 Each subset contains 1250 points and with this grouping the minimum distance between points within any subset is still dmin = 4.

4D 8-State TCM w/ Partitioning

