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• Study of transmit front-end solutions
− “Simple”: no digital filtering, 800 Ms/s DAC, simple R//C signal 

smoothing (f3dB = 300 MHz), 1:1 transformer → transmit PSD depends 
on inaccurate analog components, no designed spectral nulls at dc 
and 1/2T, poor return loss. 

− “Baseline”: no digital filtering, 800 Ms/s DAC, signal smoothing by 
RLC front-end filter (f3dB = 300 MHz) with constant output impedance, 
1:1 transformer
→ transmit PSD depends on inaccurate analog components, no 
designed spectral nulls at dc and 1/2T, good return loss.

− “Oversampled”: digital filtering and interpolation, 1600 Ms/s DAC, 
simple R//C signal smoothing (f3dB = 1 GHz), 1:1 transformer →
transmit PSD exhibits well defined shape with spectral nulls at dc 
and 1/2T, good return loss.
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ContentsContents

• Decision-point SNR vs. length of precoding response
−Analysis: finite-length precoding response + infinite-length FFE 

optimized in MMSE sense.

−Results obtained for “baseline” and “oversampled” transmit front-
end, showning advantages of “oversampled” solution. 

− For worst case link characteristics, a programmable FIR precoding 
response of length L = 32 is found to be sufficient; L = 16 leads to 
small, but noticeable  performance degradation.

• PMA training issues
− Proposed main state diagram and state designations

−Generation of PMA training sequences: proposal for concise and 
unambiguous description

− Functional description of PMA training states.
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Study of transmit front-end 
solutions
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Transmitter frontTransmitter front--end: end: ““simplesimple””
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Transmitter frontTransmitter front--end: end: ““baselinebaseline””
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Transmitter frontTransmitter front--end: end: ““oversampledoversampled””
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S21: insertion loss PHY to Line (S12 is similar) S22: return loss Line to Line (S11 is similar)
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Transmit PSD: Transmit PSD: ““oversampledoversampled””
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Transmit PSD: Transmit PSD: ““oversampledoversampled””
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MDI return lossMDI return loss

Perfectly implemented AFE filter + transformer pair 3
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Study of transmitStudy of transmit--frontfront--end solutions: summaryend solutions: summary

“Simple” solution ruled out: fails to meet MDI return loss spec.

lower rms, 
peak similar to “baseline”

higher rms,
peak similar to “oversampled”

rms and peak voltage 
at DAC output

OKOKReturn loss

sharp bandwidth limitation
(EMI advantage)

substantial (→ sampling phase 
dependency in receiver)Excess bandwidth

digitally defineddepends on analog componentsTransmit PSD shape

dc and 1/2TnoneControlled spectral 
nulls

Trivial R//C1-st order RLC LPF, f3dB=300 MHz AFE filter

1600 Ms/s800 Ms/sDAC

(1-D2)/(1-0.75 D2) + interpolatornoneDigital filters

“Oversampled”
solution

“Baseline”
solution
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Study of transmitStudy of transmit--frontfront--end solutions: conclusionend solutions: conclusion

• Peak voltages at DAC output for “oversampled” and 
“baseline” solutions are similar; higher PAR of 
“oversampled” is compensated for by lower rms voltage. 

• Cost of digital filtering and oversampling DAC outweighs 
disadvantages of “baseline solution”

o RLC AFE filter: two coils, concerns about balance, etc.

o PSD shape: substantial excess bandwidth, dependency on analog 
components, no controlled spectral nulls at dc and 1/2T

o hybrid function requires image impedances matching frequency-
dependent input impedance of AFE filter.

Proposal: adopt well defined transmit PSD shape with 
sharp bandwidth limitation and spectral nulls at dc 
and 1/2T, as enabled by an “oversampled” transmit 
front-end solution.  

PT = 5 dBm → 4 Vppd at DAC output !!!
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Decision-point SNR vs.
length of precoding response
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Optimum precoding response and decisionOptimum precoding response and decision--point SNRpoint SNR
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Folded spectral SNR function +1Folded spectral SNR function +1
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FiniteFinite--length length h(Dh(D) + infinite FFE, MMSE optimized) + infinite FFE, MMSE optimized
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FiniteFinite--length length h(Dh(D) + infinite FFE , MMSE optimized) + infinite FFE , MMSE optimized
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FiniteFinite--length length h(Dh(D) + infinite FFE , MMSE optimized) + infinite FFE , MMSE optimized
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FiniteFinite--length length h(Dh(D) + infinite FFE , MMSE optimized) + infinite FFE , MMSE optimized
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Class E cable, PT = 5 dBm, l  = 100m, AWGN = -140 dBm/Hz, PS_ANEXT and PS_AFEXT from PT = 5 dBm, l  = 100m
TX front-end: “baseline”; fixed receive filter: 3rd-order BWF, f3dB = 300 MHz;  worst-case sampling phase  
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FiniteFinite--length length h(Dh(D) + infinite FFE , MMSE optimized) + infinite FFE , MMSE optimized
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Class E cable, PT = 5 dBm, l  = 100m, AWGN = -140 dBm/Hz, PS_ANEXT and PS_AFEXT from PT = 5 dBm, l  = 100m
TX front-end: “oversampled”; fixed receive filter: 3rd-order BWF, f3dB = 300 MHz;  worst-case sampling phase      
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FiniteFinite--length length h(Dh(D) + infinite FFE , MMSE optimized) + infinite FFE , MMSE optimized
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Class E cable, PT = 5 dBm, l  = 100m, AWGN = -140 dBm/Hz, PS_ANEXT and PS_AFEXT from PT = 5 dBm, l  = 100m
TX front-end: “baseline”; fixed receive filter: 3rd-order BWF, f3dB = 300 MHz;  worst-case sampling phase  
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FiniteFinite--length length h(Dh(D) + infinite FFE , MMSE optimized) + infinite FFE , MMSE optimized
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h(D), L=16 :   SNRmmse = 24.55 dB  

Class E cable, PT = 5 dBm, l  = 100m, AWGN = -140 dBm/Hz, PS_ANEXT and PS_AFEXT from PT = 5 dBm, l  = 100m
TX front-end: “oversampled”; fixed receive filter: 3rd-order BWF, f3dB = 300 MHz;  worst-case sampling phase  
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DPDP--SNR SNR vsvs length of precoding response: conclusionlength of precoding response: conclusion

• Decision-point SNR is insensitive to length L of precoding 
response; a programmable FIR precoding response with
L = 32 is adequate. L = 16 leads to small, but noticeable  
performance degradation. L = 32 provides headroom for 
dealing with non-smooth SNR(f). Coefficients >2 found.

• In addition, the results illustrate the benefits of the  
“oversampled” TX front-end:

o Higher decision-point SNR due to better PSD shape

o SNR performance always insensitive to sampling phase due to 
stricter bandwidth limitation and spectral null at 1/2T

o Spectral null at dc reduces constellation expansion.

Proposal: adopt programmable FIR precoding with L = 32 and 
coefficient values in [-4,+4). Forget fixed precoding responses.

Same response for all pairs, or four individual responses?
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PMA training issues
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Proposed main state diagram and state designationsProposed main state diagram and state designations
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Unambiguous generation of PMA training sequencesUnambiguous generation of PMA training sequences
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Functional description of PMA training statesFunctional description of PMA training states

Master Training I (M00)
• Send 16K-periodic PMA training frames w/o THP
• Adjust echo/next cancellation
• Gradually increase TX power starting from minimum power
• Check for reception of PMA training frames from Slave
Relevant entries in transmitted InfoField

− current state = 00 2 bit
− current TX power 3 bit
− announced next TX power 3 bit
− announce transition to next state 1 bit
− transition counter 12 bit

Condition for transition to next PMA training state (M01)
Reception of PMA training frames from Slave detected

Do you prefer to say “increase TX power” or “decrease PBO”?
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Functional description of PMA training statesFunctional description of PMA training states

Master Training II (M01)
• Send 16K-periodic PMA training frames w/o THP
• Refine echo/next cancellation adjustments
• Adjust receiver settings for DFE operation
• InfoField decoding
Relevant entries in transmitted InfoField

− current state = 01 2 bit
− current TX power 3 bit
− announced next TX power 3 bit
− requested TX power 3 bit
− decision-point MSE in dB                   6 bit
− announce transition to next state 1 bit
− transition counter 12 bit

Relevant entries in received InfoField
Same as in transmitted InfoField with current state 01

Condition for transition to next PMA training state (M10)
Master and Slave decision-point MSE < MSE threshold
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Functional description of PMA training statesFunctional description of PMA training states

Master Coeff Exchange (M10)
• Send 16K-periodic PMA training frames w/o THP
• Refine echo/next cancellation adjustments
• Refine receiver settings for DFE operation
• InfoField decoding
Relevant entries in transmitted InfoField

− current state = 10 2 bit
− coefficient index 4 bit  (3 bit)
− two coefficients 16 bit  (four coefficients 32 bit) 
− all coefficients received 1 bit
− announce transition to next state 1 bit
− transition counter 12 bit

Relevant entries in received InfoField
Same as in transmitted InfoField with current state = 10 

Condition for transition to next PMA training state (M11)
Master and Slave have received all 32 coefficients
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Master Test THP (M11)
• Send 16K-periodic PMA training frames with THP
• Refine echo/next cancellation adjustments
• Refine receiver settings for THP operation
• InfoField decoding
Relevant entries in transmitted InfoField

− current state = 11 2 bit
− current TX power 3 bit
− announced next TX power 3 bit
− requested TX power 3 bit
− decision-point MSE in dB                   6 bit
− announce transition to next state 1 bit
− transition counter 12 bit

Relevant entries in received InfoField
Same as in transmitted InfoField with current state 11 

Condition for transition to PCS operation
Master and Slave decision-point MSE < MSE threshold



IEEE P802.3an May 2005 Interim41

Functional description of PMA training statesFunctional description of PMA training states

Slave functions  in Training I (S00), Training II (S01), Coeff
Exchange (S10), and Test THP (S11) are conceptually similar.


