# Completing the draft & analysis of comments on D1.1

Sanjay Kasturia Editor-in-chief, 802.3an

(650) 704 7686 skasturia@teranetics.com

#### Introduction

- Draft 1.1 has been generated and is available online. For questions:
  - Jose Tellado for PCS and PMA sections
  - Sandeep Gupta for the PMA Electrical
  - Eric Lynskey for the Management Interface
  - Chris DiMinico for the Link Segment
  - Terry Cobb for the MDI and environmental specification
- The draft has been updated from D1.0 and D1.1 should be consistent with all the key decisions that were been taken by the Task Force
  - One comment (#26) resolution was incorrectly incorporated
    - "Change "characteristic" to "nominal""
  - We have ~200 TBDs in Draft 1.1
  - We have ~140 comments some details are on the next slide

## Comments

| Name                                               | E  | Т      | TR |
|----------------------------------------------------|----|--------|----|
| Brad Booth                                         | 45 | 13     | 8  |
| Brett McClellan                                    | 1  | 23     |    |
| Pat Thaler                                         |    | 5      | 8  |
| Bijit Haldar                                       | 5  | 5      | 1  |
| Jose Tellado                                       |    | 3      | 3  |
| Katsutoshi Seki                                    |    |        | 5  |
| Scott Powell                                       |    | 3      |    |
| Gottfried Ungerboeck                               |    | 3      |    |
| Joseph Babanezhad                                  |    | 2      |    |
| Sailesh Rao                                        |    |        | 1  |
| Chris Pagnanelli, Raju<br>Hormis, Takeshi Nagahori |    | 1 each |    |

- Numbers are approximate
- ~30 are TR, ~60 are T, ~50 are E

# T/TR comment breakdown by clauses

| Clause | T & TR<br>comments |
|--------|--------------------|
| 28     | 19                 |
| 55.1   | 6                  |
| 55.2   | 1                  |
| 55.3   | 27                 |
| 55.4   | 7                  |
| 55.5   | 4                  |
| 55.7   | 5                  |
| 55.8   | 2                  |

- 28 is auto-negotiation
- 55.1 is the introduction
- 55.2 is the service primitives & interfaces
- 55.3 is the PCS section
- 55.4 is the PMA section
- 55.5 is the PMA electricals section
- 55.7 is the link specification
- 55.8 is the MDI specification
- Numbers are approximate

# Major areas of focus for completion

- Full specification of the transmit frame
- Baseline specification for THP
- Power backoff
- Transmit PSD and/or associated pulse template
- Startup
- Auto-negotiation: Clause 28 comments

#### **Transmit Frame**

- Full specification of the transmit frame
  - Specific LDPC code & frame
  - Mapping of bits from XGMII to PAM symbols
  - Analysis of mean time between undetected error events
  - Previous decisions: PAM12; 800MHz; 64/65B based framing, 1-4 LDPC code words per 10GBASE-T PCS frame
- Proposals for transmit frame (check presentations for details)
  - PAM16 proposal with (2048,1649) LDPC code from Sailesh Rao
    - Significant differences from previous PAM8 (2048,1723) proposal
  - Double Square Constellation based proposal with (2048,1723) LDPC code from Powell/Shen/Ungerboeck
    - Significant improvement claimed on previously claimed performance results on (2048,1723) LDPC code
  - PAM12 framing proposal with (1024,833) LDPC code from McClellan/Dabiri
    - Replaces most frame synch bits in prior proposal with additional CRC bits to address mean time between undetected error events
- All present analysis of mean time between undetected error events

# **Transmit Frame Proposals**

- As per editor's interpretation of authors' claims; this is not an endorsement of claims
  - Check original presentations which are on the .an website
- Life of universe:
  - 13.7 Billion years from a cosmological model based on Hubble's constant & density of matter and dark energy
  - 8-11 +-4 Billion years based on radioactive decay of certain elements
  - 12 +-3 Billion years based on age of the oldest white dwarfs

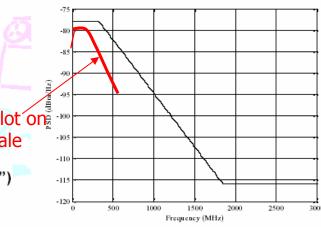
|                                                      | Constel<br>lation | Should task force consider proposal that ignore PAM12 decision as per slide 31 of: http://www.ieee802.org/3/an/public/sep04/agenda_1_0904.pdf | LDPC<br>code/SNR<br>margin        | Impulse<br>noise<br>immunity | Mean time<br>between<br>undetected<br>error<br>events | Latency            |
|------------------------------------------------------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|------------------------------|-------------------------------------------------------|--------------------|
| Sailesh Rao                                          | PAM16             | Impulse noise performance of PAM12 & MTBUEE                                                                                                   | ~0.5dB<br>worse<br>than<br>PAM12  | Ranked 1<br>by SR            | >914<br>Billion<br>years                              | Equal to reference |
| Scott Powell,<br>BZ Shen,<br>Gottfried<br>Ungerboeck | Double<br>Square  | Error propagation in binary to ternary mapping required by PAM12 & 0.8dB better SNR performance                                               | ~0.8dB<br>better<br>than<br>PAM12 | Ranked 3<br>by SR            | >140,000<br>years                                     | 2x on<br>LDPC      |
| McClellan,<br>Dabiri                                 | PAM12             | Compliant                                                                                                                                     | reference                         | Ranked 2<br>by SR            | >17 Billion<br>years                                  | reference          |

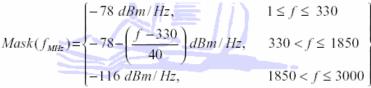
# **Tomlinson Harashima Precoding**

- At the Ottawa meeting, the task force decided on:
  - "Small number of selectable precoders specified by rational transfer functions"
  - We currently have proposals for:
    - 4 IIR THP models from Powell/Shen/Ungerboeck & Golden
      - 2 Pole 3 zero IIR
    - 16 TAP FIR THP recommendation from Vareljian
    - 4 FIR THP results from Golden
  - Decision options:
    - Pick specific set of N (4) IIRs
    - Pick specific set of N (4 or ?) 16 (32?)-TAP FIR coefficients
    - Decide that the transmitter must implement either of:
      - 4 IIRs or N 16/32-TAP FIR coefficients
  - Selection of TX PSD specification may help in consistency of simulation results

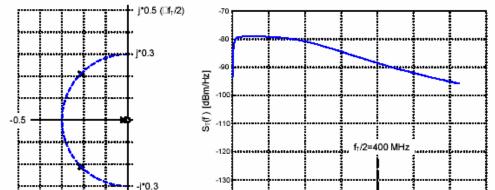
#### Power backoff

- Two proposals for power backoff:
  - 5dBm, -1dBm, -7dBm, -13dBm from Powell/Shen/Ungerboeck
  - 5dBm, 2.5dBm, 0dBm, -2.5dBm, -5dBm from Golden/Tellado
  - Optimization for either:
    - 100m, 85m, 65m, 35m, 0m or
    - 100m, 75m, 50m, 25m, 0m
- Can we get a consensus proposal?
- Can we tie each power backoff level uniquely to a specific THP coefficient set?


#### Transmitter Power Spectral Density


- Three Two PSD proposals:
  - Powell/Shen/Ungerboeck (as tx filter)
  - Takatori/Vareljian
  - Pagnanelli -→ merged (as psd)






#### Transmit PSD Mask Definition









Achievable SNR vs. cable length does not critically depend on exact shape of S<sub>r</sub>(f)

Frequency [100 MHz]

- Comment submitted to eliminate time domain pulse templates
  - PSD is claimed to be adequate

Poles in f<sub>N</sub>-plane: Zeroes in f<sub>y</sub>-plane: b1= 0.00000+1 0.00000

f<sub>N</sub>-plane

a1=-0.00500+1\*0.00000 a2--0.21213+j\*0.21213 a3--0.21213-1\*0.21213





#### Startup

- Two proposals
  - Seki + supporters from: http://www.ieee802.org/3/an/public/nov04/seki\_1\_1104.pdf
    - Derivative of 1000BASE-T
    - Detailed state diagrams provided
  - Powell/Shen/Ungerboeck from: http://www.ieee802.org/3/an/public/nov04/ungerboeck\_1\_1104.pdf
    - No detailed state diagrams yet
  - Two options:
    - Have each developed further & then choose one?
    - Combine them, resolve conflicting ideas, then develop further?
- PMA training
  - Seki scrambler of 32 bits, length 2^32 (~ 4E9)
  - Ungerboeck: Repeating pattern 16K (~2^14)
  - Decision point: repeating pattern or not?
- THP and Power Backoff settings
  - Seki: Selected during autonegotiation but not specified in detail
  - Ungerboeck: Selected during start-up? Slide 24
- Polarity, Pair swap, Pair Skew
  - Seki details distinct functions to detect
  - Ungerboeck has not specified them yet
- PMA training control
  - Seki: 1 bit to indicate remote PMA ok.
  - Ungerboeck: New 48 bit InfoField indicating SNR, THP, power backoff etc.

#### **Auto-Negotiation**

- Main technical issues
  - Clause 45 MDIO needs to be added and registers need to be created, mapping between Clause 22 and 45
  - How to handle 16-bit message codes when using extended next pages
  - Does startup proposal break any of the Clause 28 timers
- Lots of editorial clean-up
  - Template changes, PICS renumbering, change bars

#### Other items

- Loop timing Optional or required?
- Cable diagnostics Does anyone want to put items together for this?
- Link specification
  - Class E augmentation What is status of the work item proposal in ISO?
  - Brad suggests restructuring 55.7 because there are multiple link segments
  - Chris's comment:

assured.

The editorial strategy was to follow Clause 40. 802.3an does follow Clause 40. 802.3an has only one link segment specified.

55.7.2 is titled link transmission parameters (read 10GBASE-T link transmission parameters).

A link segment "is" the worse case channel requiring a "shall" and associated PICS. There is only ONE "link segment" specification and that is based on "Class E". Class F complies with the "Class E" link segment specification with the addition of the 55.7 PSANEXT requirement for a Class F channel (required to meet our objective of specifying 100m over Class F). By specifying two link segments we infer Class E OR Class F specifications. Designing to Class F may not meet Class E therefore compatibility is not

When referring to media types the AND's are placed in the appropriate places i.e., when addressing the link transmission requirements; Class E and Class F. The OR's are enduser options i.e., Class E or Class F.