

Options for Comment Resolution

Sailesh K. Rao Phyten Technologies, Inc. srao@phyten.com

Current Status

If we restrict ourselves to 800 Ms/s symbol rate and PAM12 modulation

12-level modulation makes it difficult to protect more than 2 bits per symbol with an LDPC code

- 12 is 2x2x3 which is a product of powers of different primes, which does not lead to a simple Galois field for coding purposes
- We've considered an option to combine two separate (binary (GF4) and ternary (GF3)) codes in a symbol interleaved fashion. However,
- Interleaved block decoders across dual Galois field domains didn't work well
 - needed to "rob" from the current (1024,833) binary code to provide protection for the GF(3) ternary symbols
 - GF(3) ternary symbols fundamentally require high error-propagation mapping/demapping to achieve efficient code point usage (i.e., 12T->19B->12T)
- Required code rate to protect all the bits is at least 3.1738/3.5850 = 0.89, which is larger than the rate of all the 1K block codes that have been considered to date.

Options for comment resolution with All Bits Protected (P)

Proposal	Symbol Rate	#Info Bits/ Symbol	#Protected Bits/ Symbol	#Unprote cted Bits/ Symbol	Latency (T)	LDPC Code	Remarks
PAM8-P	1Gs/s (19.6dB)	2.5391	2.5391	0.0	192T	(2304,1979)	Most robust solution for 10GBASE-T
128DSQ-P	833Ms/s (approx. 23dB)	3.0469	3.0469	0.0	192T	(2688,2363)	Potential Compromise with 128 DSQ
PAM16-P	800Ms/s (24.2dB)	3.1738	3.1738	0.0	128T	(2048,1649)	rao_1_1104.pdf
128DSQ	800Ms/s (23.0dB)	3.1738	1.6738	1.5	256T	(2048,1723)	ungerboeck_1_ 1104.pdf
12D PAM12-T	800Ms/s (23.8dB)	3.1738	1.5905	1.5833	128T	(1024,833)	dabiri_1_1104.p df

Compromise solutions

The most robust solution is PAM8-P.

If the Task Force is concerned about the 1Gs/s symbol rate, we can compromise with PAM16-P at 800Ms/s.

We can also compromise with the following 128DSQ-P at 833Ms/s:

- 833.33Ms/s Pulse Amplitude Modulation
- 192 symbol framing using 36 64B/65B blocks (2340 bits)
 - 2340 bits are protected by LDPC code
 - Intrinsic Latency less than 128-DSQ proposal
- (2688,2363) RS-LDPC code, for e.g.,
 - 23 bits used for Error Detection to ensure acceptable MTTFPA
- 2688 protected bits are mapped onto 384 128-DSQ symbols.
 - All transmit bits are protected by LDPC decoder eliminates co-set distance limitation with respect to EMI ingress tolerance.
 - Simple 2-D mapping
 - Modulo "power of 2" arithmetic throughout.