800MHz 12D 12PAM Mapping and Frame Structure Proposal

IEEE P803.2an Task Force Ottawa, September '04

Brett McClellan

Supporters

- George Zimmerman
- Katsutoshi Seki
- Jose Tellado
- Chine-Hsin Lee

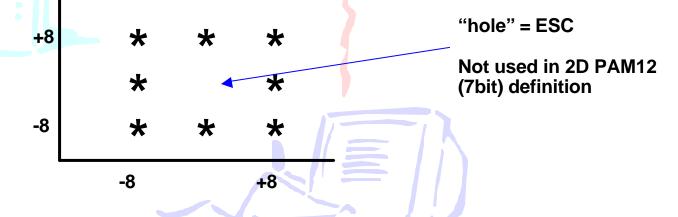
NEC Teranetics

KeyEye

Solarflare

Problem Statement

- The proposed 2D 12PAM constellation is an inefficient mapping and results in both a power and baud rate penalty.
 - "donut" constellation has 0.43dB higher power than uniform 12PAM
 - >2% baud rate penalty vs. a square constellation
- The proposed frame structure is also inefficient and very complex
 - 51,200 payload bits over 4224 baud


12D 12PAM Mapping

- 12-dimensional mapping
 - 4 pairs x 3 baud = 12D constellation
- 43 bits per mapping (3 baud)
 - 14.3333 bits per baud vs. 14
 - 8 coded + 6 1/3 uncoded bits per baud
 - 24 coded + 19 uncoded bits per 12D symbol
- Uses the full 12x12 PAM constellation
 - viewed from any 2D
- Only 0.03dB TH precoding loss
- Transmit power independent of line length

12D Mapping Construction

- Use the proposed "donut" as a base mapping for the 2D constellations
 - described in Powell (July)
 - Every 7 bits are mapped to 2 pair (2D)
 - 4 coded bits to select coset
 - 3 uncoded bits to select 1 of 8 partitions

Treat the missing 9th partition as ESC

12D Mapping Construction

- Create 12D symbol from 6 sets of 2D mappings
 - AB1, CD1, AB2, CD2, AB3, CD3
 - 43-bit input
 [®] 1bit MSB + 6 x 7bits
 - for MSB=0 use the base mappings for all 6 2D groups
 - for MSB=1 replace some 2D mappings with ESC
 - 19 uncoded bits select the 6 2D partitions (see table T1)
 - The 6 2D mappings may contain 1, 2 or 3 ESC symbols based on the word value
 - coded bit mappings remain unchanged
 - 24-bits ® 2 bits per pair per baud
 - 12D Mapping is described in 4 tables

12D ESC Mapping Tables

• Table T1

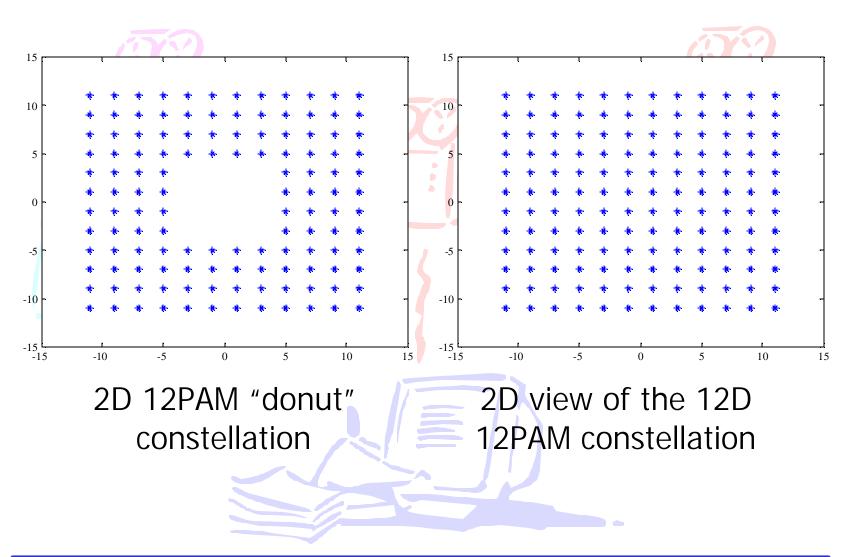
19 uncoded bits select the 6 2D partitions

18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	Ō	AB1			CD1		-	AB2	2		CD2	 		AB:	3		CD3	_ }
1	0	1 x E See		5 x	2DP	AM1	2, in	ord	er as	abc	ove ir	n the	rem	aini	ng 2	D pa	rtitior	IS
1	1	0	see T2	5 x	2DP	AM1	2, in	ord	er as	s abc	ove ir	n the	rem	aini	ng 2	D pa	rtitior	IS
1	1	1	2 x E See				4 x	2DF	PAM1 in t	•	ord emai				tions	5		
1	1	1	1	1	1	1	3 x E See			3 x	2DP		-			s abo rtitio	ve in	the

12D ESC Mapping Tables Table T2 - Escape positions, 1 ESC Escape position AB1 CD1 AB2 CD2 AB3 CD3

-

12D ESC Mapping Tables


T3 - Escape positions, 2 ESC

15	14	13	12	Escape positions
0	0	0	0	AB1, CD1
0	0	0	1	AB1, AB2
0	0	1	0	AB1, CD2
0	0	1	1	AB1, AB3
0	1	0	0	AB1, CD3
0	1	0	1	CD1, AB2
0	1	1	0	CD1, CD2
0	1	1	1	CD1, AB3
1	0	0	0	CD1, CD3
1	0	0	1	AB2, CD2
1	0	1	0	AB2, AB3
1	0	1	1	AB2, CD3
1	1	0	0	CD2, AB3
1	1	0	1	CD2, CD3
1	1	1	0	AB3, CD3

T4 - Escape positions, 3 ESC

11	10	9	Escape positions
0	0	0	AB1, CD1, AB2
0	0	1	CD2, AB3, CD3
0	1	0	AB1, CD1, AB3
0	1	1	AB2, CD2, CD3
1	0	0	AB1, AB2, CD2
1	0	1	CD1, AB3, CD3
1	1	0	AB1, AB2, CD3
1	1	1	CD1, CD2, AB3

2D Constellation View

Frame Structure for 12D 12PAM

- LDPC block frame of 128 baud
 - 12D 12PAM mapping
 - 800 MHz baud rate
 - 1600 bits of payload per block
 - 64b/65b coding
 - Clause 49 scrambler / descrambler
 - (1024,833) LDPC
 - 1 baud per frame dedicated to frame alignment

Frame Construction

- Construct an LDPC block from 25 blocks of 64b/65b coded data
 - 50 XGMII transfers -> 1600 bits
 - 1600 bits->65/64 -> 1625 bits
 - Add 4 pad bits -> 1629 bits
- Split into coded/uncoded
 - 1629 -> 825 coded + 804 uncoded
- LDPC encode using (1024,833)
 - Use 825 bits + 8 pad bits (= '0')
 - Generate 191 check bits

Frame Construction

- LDPC encoded block
 - 804 uncoded bits
 - 825 coded bits + 191 check bits = 1016 bits
- Transmit bits over 127 baud frame
 - 127 baud of 12PAM carries
 127 x 8 = 1016 coded bits
 - 126 baud of 12D 12PAM + 1 baud of 4D 12PAM (2 pairs of 2D) carries 126x19/3 + 6 = 804 uncoded bits

Frame Alignment

- A single baud is added to every 127 baud LDPC block for frame alignment
 - 2PAM: e.g. +7/-7
 - An alternating or PN sequence may be transmitted during this time for alignment testing
 - Or, the LDPC blocks may be grouped into bundles of 8 preceded by an 8 x 4D 2PAM frame alignment symbol (per the Tellado_1_0704 12PAM proposal)

Baud Rate

- Baud Rate = 128 x 10G / (1600 bits)
 - = 800Mbaud
 - Easy frequency to generate
 - 25MHz XTAL with small N & M PLL divisors can generate XGMII, XAUI and baud rate clocks
 - Low jitter
 - <1% penalty for frame alignment

Lower baud rate option

- Frames are 127 baud
- Perform frame alignment during the startup process per the 8PAM proposal.
- Alignment status is determined by LDPC decoder
- Baud Rate = 127 x 10G / (1600 bits)
 - = 793.75 Mbaud
 - Uses 25 MHZ XTAL -> (25 * 127 / 4)
 - ~ 1% lower than 800MHz

Additional Codes

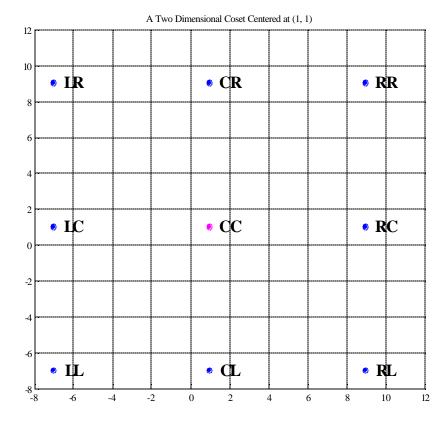
Extensible to other codes and block sizes

- e.g. (2048,1723) with 255 baud block @ 781.25 MHz

ulations	
1024	2048
833	1723
127	255
4	15
1600	3264
793.75	781.25
30.07	30.37
0.79	1.09
$\equiv 1$	
800	784.313725
29.92	30.29
0.64	1.01
	1024 833 127 4 1600 793.75 30.07 0.79 800 29.92

Summary

- This 12D 12PAM mapping and framing proposal provides for:
 - 800MHz baud rate using (1024,833) LDPC
 - 0.64 dB SNR gain over prior proposal
 - Simple frame construction
 - 128 baud frames
 - 1600 bit payload
 - Robust frame alignment
 - Addresses the baud rate and transmit power penalties of the current 12PAM proposal.
 - Utilizes Clause 49 coding and scrambling


Backup Slides

- Alternative 12D Mappings
- Base-3 Mapping (Jose Tellado)
 - For each 12D symbol convert the 19 uncoded bits to 12
 - base-3 values
 - Each base-3 value selects a ternary (L,C,R) partition on a single pair per baud
 - Demapping uses reverse process
- Refinement to the 12D ESC (Dariush Dabiri)
 - Equivalent to 12D ESC but requires only 1 table
 - Description follows (from Dariush)

2D Partitioning

- Decompose the 2D constellation into two sets:
 - B: The 8 blue points.
 - R: The red point at the center.

4D Labeling Rules

- Any 4D coset, S, has 3^4 = 81 points.
- Any 4D coset can be decomposed as:
 - S = X + Y + Z (see the table below).
- Points of X use 2 copies of the 3-bit Gray labeling of B. Each copy is used for 2D. A total of 6bits/4D.
- For points of Y, the MSB chooses between RxB and BxR. Use the 3-bit Gray labeling of B to choose points inside RxB (or BxR) (Note: R has only one point). A total of 4bits/4D.

Set	Formula	Points	No of Bits
Х	ВхВ	64	6
Y	RxB + BxR	16	4
Z	RxR	1	0

12D Labeling

- Each constellation subset is identified by a unique prefix (see the next table).
- Points inside each subset are labeled by 3 copies of the 4D labeling of the previous slide. The generated bits are called the 'suffix bits' of each constellation point.
- The next table shows prefixes for the 12D subsets used in our labeling:

Prefix	Subset	No of Suffix Bits	Total Bits
0*	(X, X, X)	18	19
100*	(X, X, Y)	16	19
101*	(X, Y, X)	16	19
110*	(Y, X, X)	16	19
11100*	(Y, Y, X)	14	19
11101*	(Y, X, Y)	14 🗸	19
11110*	(X, Y, Y)	14	19
1111100*	(X, X, Z)	12	19
1111101*	(X, Z, X)	12	19
1111110*	(Z, X, X)	12	19
1111111*	(Y, Y, Y)	12	19

Mapper and Demapper

- Mapper:
 - Prefix match to find the unique matching prefix and the corresponding subset.
 - Use the suffix bits to specify the constellation points according to the 4D labeling rules.
- Demapper:
 - Identify the unique 12D subset for the received 12D symbol.
 - Use the table to find the unique prefix.
 - Use the 4D labeling rules to find the suffix bits.