4-Channel Sampling Considerations for 10GBASE-T

IEEE 802.3an Interim Meeting
September 2004

Scott Powell, Broadcom
Agenda

• 4 Channel Sampling
 – Challenges & alternatives

• Phase Insensitive Sampling
 – Zero excess bandwidth channel

• 4 Channel Sampling with Single Free Running Clock
 – Modified master/slave

• Summary/Conclusions
4 Channel Sampling

Traditional Analog/Digital Phase Compensation

- Optimal baud spaced samples are ≈ at pulse peak
- Independently adjusted phase for each channel
Implementation Challenges

• Approach 1: independent PLL per channel

Each PLL independently adapts to optimal frequency/phase

• Theoretically possible but has implementation challenges
 - Difficulties with multiple VCOs on same die – interactions almost inevitable
 - Injection locking has been shown to be the root cause failure mechanism in previous products
Implementation Challenges

- Approach 2: Single VCO with phase selector

- 50~60dB Echo suppression requires very large number of phases: $N_{10G} >> N_{1G}$

- Single PLL generates N phases of a single recovered clock
- Mux on each channel independently selects optimal phase

- Phase steps cause transient echo cancellation errors
Implementation Challenges

• Decision directed timing recovery has ADC+FFE latency in PLL loop

• Jitter tolerance and latency are opposing goals
 – Latency requires PLL bandwidth to be reduced
 – Jitter tolerance requires PLL bandwidth to be increased

• Low jitter requirement may constrain design options for ADC, FFE, slicer
 – Eg: FFT based filters offer lower complexity but higher latency
System Solution to Implementation Challenges

- **Approach 3: Move timing recovery after FFE:**
 - Digital interpolator instead of analog VCO or phase selector

- **Removes latency restriction on ADC and FFE**
 - Opens opportunity for design innovation

- **Free running clock removes requirement for high precision phase selector**

Diagram:
- RX → ADC → FFE → interp → DPLL
System Solution to Implementation Challenges

- Approach 3: Move timing recovery after FFE:
 - Digital interpolator instead of analog VCO or phase selector

- ADC, DAC, echo canceller, FFE all on same clock
 - Removes need for FIFOs

Advantage #3
System Solution to Implementation Challenges

• Approach 3: Move timing recovery after FFE:
 – Digital interpolator instead of analog VCO or phase selector
 – FFE in each channel performs independent phase adjustment
 – Analog PLL per channel not required
 – Removes requirement for large phase selector
 – Single clock for all 4 channels (may want intentional fixed offset)

Advantage #4

![Diagram showing system solution to implementation challenges]
Transmitter Requirements

1. Standard does not need to specify receiver implementation
 - All three options can be permitted with appropriate transmitter

2. Two main transmitter features must be adopted by task force to permit option 3:
 1. Zero excess bandwidth channel
 - Permits (but does not require) digital timing recovery after equalizer
 2. Slave \textit{optionally} transmits with recovered clock
 - Permits (but does not require) single free running clock at both ends of link

3. Neither of these features precludes implementation options 1 or 2
Agenda

• 4 Channel Sampling
 – Challenges & alternatives

• Phase Insensitive Sampling
 – Zero excess bandwidth channel

• 4 Channel Sampling with Single Free Running Clock
 – Modified master/slave

• Summary/Conclusions
Zero Excess Bandwidth

- Well known technique for phase insensitive sampling
 - Signal bandwidth constrained to $< \frac{F_{\text{baud}}}{2}$
 - Permits sampling phase to be adjusted digitally (through interpolation)

- Severe insertion loss channel is already close to a zero excess bandwidth channel
 - Additional zero at $\frac{F_{\text{baud}}}{2}$ does not change much

![Insertion Loss (linear scale)]
Tx Filtering for Phase Insensitivity: Minimal Rate Loss

- Cable Model #3: 100m Class E (Cat 6) screened
- TX PSD with cosine roll-offs: zero excess bandwidth and 25% excess bandwidth
- Modulation rates $f_T = 1/T = 400$ to 1400 Mbaud; $P_T = 10$ dBm, $N_0 = -135$ dBm/Hz, $\Gamma = 4 (6 \text{ dB})$.

Negligible rate loss with zero excess bandwidth filter

Shapes of $S_T(f)$

- $f_1 = 1/4T$
- $f_2 = 1/2T$
- Zero excess BW

- $f_1 = 1/4T$
- $f_2 = 5/8T$
- 25% excess BW
Tx Filtering for Phase Insensitivity: Minimal SNR loss

Cable type = "ClassEs"; $f_T = 820.72$ MBaud (12 - PAM); practical TX filter;

$P_T = 5$ dBm; alien NEXT + AWGN (-140 dBm/Hz); opt. FFE

Diagram:*

- **SNR$_{\text{mmseWMF}}$ [dB]:** optimum $h(D)$ for each length
- **SNR$_{\text{MF+mmseFFE}}$ [dB]:** fixed $h_{\text{IIR}}(D)$
- **SNR$_{\text{pRF+mmseFFE}}$ [dB]:** fixed $h_{\text{IIR}}(D)$ (worst-case sampling phase)
- **SNR$_{\text{req}}$ ≈ 23 dB**

Notes:

- Negligible SNR loss with zero excess bandwidth filter

Connecting everything™
Implementation: Background

- **Phase insensitive sampling**
 - Single free-running PLL for all four channels

- **Define:**
 - “Physical Channel” ≡ Tx filter + cable/connectors + FFE
 - “Prototype Channel” ≡ precoder feedback filter

- **Fixed prototype channel, adaptive physical channel**
 - FFE will adapt to make physical channel = prototype channel
Implementation of Zero Excess Bandwidth Channel

- A combination of **THP, Tx filter, cable, Rx FFE**
 - **THP** (fixed, digital): places null in prototype channel \(H(z) \) at \(F_{\text{baud}}/2 \)
 - **Tx Filter** (fixed, analog): gradual roll-off eliminates images
 - Does not need to implement spectral null (see ungerboeck_1_0704.pdf slide 19)
 - **Cable** (fixed, analog): approx inverse of THP response
 - **Rx FFE** (adaptive, digital): adapts to make channel = prototype channel
 - Implements spectral null

Conceptual “equivalent” channel: actual implementation may differ
Agenda

• 4 Channel Sampling
 – Challenges & alternatives

• Phase Insensitive Sampling
 – Zero excess bandwidth channel

• 4 Channel Sampling with Single Free Running Clock
 – Modified master/slave

• Summary/Conclusions
Master/Slave Full Duplex Communications

- Only used in 1000BT
 - 10BT, 100TX, 1000X do not have master/slave concept

- Asymmetric PHYs
 - Slave transmits with recovered clock
 - Each PHY must support both master and slave modes

Diagram:

- **Master**
 - TX
 - RX (Free running)

- **Slave**
 - RX
 - Recover Clock
 - TX
Modified Master/Slave Configuration

• Modified and traditional master/slave sides interoperate
 – modified master ↔ traditional slave traditional master ↔ modified slave

• Symmetric configuration
 – Both PHYs can have identical configurations, if desired
 – Permits phase insensitive timing recovery
 – Permits single free running clock for all 4 channels

Modified and traditional master/slave sides interoperate:
- Modified master ↔ traditional slave
- Traditional master ↔ modified slave

Symmetric configuration:
- Both PHYs can have identical configurations, if desired
- Permits phase insensitive timing recovery
- Permits single free running clock for all 4 channels
Agenda

• 4 Channel Sampling
 – Challenges & alternatives

• Phase Insensitive Sampling
 – Zero excess bandwidth channel

• 4 Channel Sampling with Single Free Running Clock
 – Modified master/slave

• Summary/Conclusions
Summary

<table>
<thead>
<tr>
<th>Challenges of Traditional 4-Channel Sampling</th>
<th>Advantages of Phase Insensitive Sampling</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Independently controlled phase for each channel</td>
<td>1. No restrictions on ADC/FFE implementation</td>
</tr>
<tr>
<td>2. Multiple VCO’s have interaction difficulties (injection locking, jitter coupling)</td>
<td>2. Single VCO, no high precision phase selector</td>
</tr>
<tr>
<td>3. Phase selectors require large number of phases due to large echo</td>
<td>3. Single free running clock for all 4 channels</td>
</tr>
<tr>
<td>4. Analog PLL loop delay restricts ADC & FFE implementation options</td>
<td>4. ADC, DAC, echo canceller, FFE for all 4 channels in same clock domain</td>
</tr>
<tr>
<td></td>
<td>5. Transmitter requirements do not preclude traditional 4-channel sampling</td>
</tr>
</tbody>
</table>
Conclusions

• Common 4-channel sampling approaches used in gigabit phys have implementation challenges for 10GBASE-T

• Simple transmitter modifications will permit alternate 4-channel sampling approaches to be considered
 — Modifications do not preclude traditional approaches

• Phase insensitive sampling offers implementation advantages and opportunities for innovation for 10GBASE-T PHYs
 — Disadvantages need to be independently quantified and weighed against advantages … goal for next meeting?