Thoughts on Comment 128 (linear fit to ICR curve)

Charles Moore, SPG of Agilent Technologies

John D'Ambrosia (dambrosia_02_0905) suggested these equations for fitting ICR:

```
favg=
```



```
b=ICRavg -mfavg
ICRLOG(f)=m\operatorname{lnf}-\textrm{b}
```

To test these equations I used the following curves from D'Ambrosia Case2 channel model.

I tried 4 ways of fitting the ICR curve:

 In linear frequency:

Or in log frequency:

On these plots:

The Red curve is ICR
The Brownish curve is a literal following of the D'Ambrosia equations.
The Green Curve is the D'Ambrosia equations assuming frequency is in GHz rather than Hz
The Light Blue curve is a linear frequency fit
The Magenta curve is a log fit using equations given below The Black curve is the ICR spec.

All fits were done over the frequency range $100 \mathrm{MHz}-5 \mathrm{GHz}$
I think that the magenta curve is the best fit and recommend that we use it.

Equations for performing log fit:

```
log}\mathrm{ favg = = 专 }\mp@subsup{\sum}{n}{}\operatorname{log}(\mp@subsup{\textrm{f}}{\textrm{n}}{}
ICRavg=}=\frac{1}{N}\mp@subsup{\sum}{\textrm{n}}{\operatorname{ICR}(\mp@subsup{\textrm{f}}{\textrm{n}}{})
m=\frac{\mp@subsup{\sum}{n}{}(\operatorname{log}(\mp@subsup{f}{n}{})-logfavg)(ICR (f}{n})-ICRavg)
b=ICRavg -m}\cdotlogfav
ICRLOG(f)=m
```


I recommend that we propose acceptance of comment 128 in principal with recommended verbiage:l

The ICRlog is defined to be the least mean square fit of the ICR with frequency plotted on a log scale, and is defined by Equations (69-20) through (69-24). The sums in these equations are to be performed over the range of values such that f_{n} is in the range of frequencies for which IRC is specified.

\log favg $=\frac{1}{N} \sum_{\mathrm{n}} \log \left(\mathrm{f}_{\mathrm{n}}\right)$	Equation69-20
$\operatorname{ICRavg}=\frac{1}{\mathrm{~N}} \sum_{\mathrm{n}} \operatorname{ICR}\left(\mathrm{f}_{\mathrm{n}}\right)$	Equation69-21

$\mathrm{m}=\frac{\sum_{\mathrm{n}}\left(\log \left(\mathrm{f}_{\mathrm{n}}\right)-\log \operatorname{favg}\right)\left(\operatorname{ICR}\left(\mathrm{f}_{\mathrm{n}}\right)-\text { ICRavg }\right)}{\sum_{\mathrm{n}}\left(\log \left(\mathrm{f}_{\mathrm{n}}\right)-\log \mathrm{favg}\right)^{2}}$ Equation69-22
b=ICRavg - m•log favg
Equation69-23
$\operatorname{ICRLOG}(\mathrm{f})=\mathrm{m} \cdot \log (\mathrm{f})-\mathrm{b}$
The $\operatorname{ICRLOG}(f)$ at the receiver is recommended to be at least:
$\operatorname{ICRLOG}(\mathrm{f})>12.5-20 \cdot \log \left(\frac{\mathrm{f}}{5 \mathrm{GHz}}\right)$

