

EIT limit for port type KR

Fulvio Spagna

Objectives

• Determine an appropriate level for the EIT test for the KR port type

- this means finding an appropriate level for the sinusoidal interference which is representative of the levels of interference experienced in presence of crosstalk
- because the EIT test methodology defined in Clause 69A is based on a high-loss channel (like the proposed ITTC23), it is important to determine the level of crosstalk experienced by a high loss channel
- Among the channels available in the database, there are several examples of high loss channels. In this presentation I will focus on the Intel channels (peters_m1_0605.zip) as they have been demonstrated to be more representative of a marginal channel.

Note: in the following pages, all the channel parameters are referenced to the new Amax(f) defined in goergen_01_0206

Intel channels: long channels characteristics (KR port type)

IL(f)

Amax(f)

A(f)

IL(f)

Intel channels: long channels characteristics (KR port type)

Intel channels: long channels characteristics (KR port type)

Simulation Environment (1)

Simulation Environment (2)

Simulation conditions:

- PRBS15 pattern
- No timing jitter on either transmitter or receiver
- 3 taps FFE, 5 taps DFE.
 - FFE boost subject to 802.3ap constraints
- Cross-talk signal is subject to the same equalization conditions as main signal
 - Cross-talk and forward signal have same launch amplitude
- Transmitter has finite rise/fall time – $t_r = t_f = 24 \text{ pS}$
- Receiver input amplifier modeled as a two pole low pass filter with poles at 0.7 $\rm f_s$ and 1.0 $\rm f_s$

Simulation Environment (3)

PRBS 15 aggressor: vertical opening : 0.251 mV_{pp} horizontal opening : 0.440 UI_{pp}

Equivalent sinusoidal aggressor: vertical opening : 0.251 mV_{pp} horizontal opening : 0.440 UI_{pp}

levelopment

Simulation Environment (4)

- Same launch voltage for forward and cross -talk signal does not represent a worst case scenario
 - Consistent with Abler_01_0106 and Abler_01_0206
 - It does not appear that handling of multiple sources of interferers is documented. Is this something that should be taken care of in Clause 69A?
- Use of PRBS15 instead of PRBS23 should still provide a reasonable approximation to the worst case eye at the slicer
 - No particular reason for this choice except simulation time
- Sinusoidal interference changes samples probability distribution at slicer input

Intel channels (1)

10 09.14.05 Digital Enterprise Group – High Speed PHY development

Intel channels (2)

Intel_Improved: Xtalk comparison of individual aggressors and mixed term (fext2 + next2)

Intel channels (3)

Intel_Improved: vertical opening at slicer

12 09.14.05 Digital Enterprise Group – High Speed PHY development

Intel channels (4)

Intel_Improved: equivalent sinusoidal interference

13 09.14.05 Digital Enterprise Group – High Speed PHY development

Intel channels (5)

M20 vs. ITTC23

• M20

- Vertical opening: 0.235 mVpp
- Horizontal opening: 0.4 UIpp

• ITTC23

- Vertical opening: 0.246 mVpp
- Horizontal opening: 0.48 UIpp
- Comparison of ITTC23 and M20 indicates a reasonable match in vertical opening.
- Horizontal opening in M20 is reduced with respect to ITTC23, most likely because of self-noise.
 - Comparison of the inserion loss deviation curves for the ITTC23 and M20 channels indicate that the latter Sdd21 curve has more ripple.

Conclusions

- The amount of interference tolerable by a channel increases as the insertion loss decreases
- For a high loss channel like ITTC23 it is important to establish realistic levels of crosstalk
- The Intel M20 channel represents a reasonable approximation to the EIT channel.
 - The insertion loss curve is within a few dB from the Amax(f) curve
 - One dominant NEXT aggressor and two significant FEXT aggressors
- The levels of crosstalk observed in the M20 are consistent, in a a power sum fashion, with the existing EIT specification of 15 mV_{pp}.
- It is recommended that the EIT spec for a KR port type is maintained at 15 $\rm mV_{pp}.$

