IEEE 802.3ap Proposal to use PR-4 Signaling for 10Gbase-KR links

IEEE 802.3ap Task Force Jan'05

Michael Altmann, Fulvio Spagna, Jun Wang

Objectives

- Propose a PR-4 based signaling solution for 10Gbase-KR signaling on backplanes
- Allows leveraging signaling techniques & experience from the storage industry
- PR4 signaling can acceptably equalize typical BP channels
 - Simulation results will be shown

Agenda

- Layer Model
- Proposal Overview
- Link Model
- PR-4 Signaling
- AN and Link training
- PR-4 simulation results
 - Adaption simulations
 - MMSE-optimized eye diagrams

IEEE802.3ap Layer Model

Slide 4

Overview

- Use PR-4 signaling for 10Gb serial BP channels
 - PR-4 has spectrum & implementation advantages
 - Requires pre-coding to limit error propagation
- Use existing 802.3 clauses for other functions:
 - PCS (clause 49)
 - PMA (clause 51)
 - MDIO (clause 45)
 - Auto-Negotiation (clause 28)
 - Possible signaling modifications as in <u>brink 01 1104.pdf</u> or <u>thaler_01_1104.pdf</u>)
- Programmable Tx and Rx equalization optimized with training

PR-4 Signaling - Background

- Used extensively in disk drive industry
- Equalized systems use non-unity target polynomial

Michael Altmann IEEE 802.3ap Task Force - 21-Jan-05

PR-4 Signaling - Background

- Multi-level encoding
 - 2-level NRZ becomes 3-level PR-4 encoded data at Rx
 - Adds coding redundancy which alters the spectrum
 - Nulls at DC and $f_{bit}/2$
 - True Nyquist channel possible for minimum noise
 - Encoding mechanism is combination of Tx Eq, channel, Rx AFE and Eq
- 'Allowable' ISI reduces equalization boost from NRZ
 - See 'altmann_02_0904.pdf'
- Zero crossing between +1, -1 pulses is an excellent timing indicator
 - Enables baud-rate Rx design
 - Reduces sampler complexity by 50%
- PR-4 requirements
 - Requires both Tx and Rx equalization
 - Tx pre-coding to limit error propagation

PR-4 Signaling

- Data encoding requirements
 - Tx pre-coding not explicitly required, however it eliminates error prpoagation from incorrectly decoded bits
- Data Decoding options
 - Can use bit-by-bit or optional MLSE (ex. Viterbi) detection
 - Receiver can operate at half-rate, as data stream is intrinsically interleaved
 - Both decoding methods requires a pre-coder to eliminate error propagation.
- PR-4 Pre-coder

PR-4 Signaling vs NRZ

- Controlled ISI creates 3-level eye diagram
- In BW-limited channels, eye height reduces slower than NRZ
- Jitter is higher due to direct $+1 \rightarrow -1$ transitions

Slide 9

Link Model (from brink_01_1104.pdf)

Link Model

Slide 10

Auto-Negotiation & Eq Training

- AN and link training required
 - AN will exchange PHY capabilities and determine bit-rate
 - Follow method similar to <u>thaler_01_1104.pdf</u> or <u>brink_01_1104.pdf</u>
- Timing Acquisition
 - Initial timing acquisition using ¼-rate signal: +1 +1 -1 -1 (approx a clk at PR4 spectral peak) before equalization
 - Rx signal is approximate sine wave
 - Final timing acquisition using simple (TBD) known data patterns
- Equalizer training
 - Initial equalizer training can occur using (TBD) training sequences (<u>altmann_02_1105.pdf</u>)
 - Optimal (TBD) training sequence will be defined for faster PR4 adaption
- After link training, equalizers continuously update with active traffic

PR-4 Equalizer Adaption Simulations

- Simulated results for channels equalized to PR-4 target polynomial
- Initial Eq estimate provided from channel response
 - Substitute for training sequence adaption
- Simulation conditions
 - Data Pattern: PRBS15, 100kbit sim time
 - NEXT/FEXT: off
 - Tx Pulse shaping: 4th Order Bessel Filtering
 - Rx Noise Filtering: None
 - Tx Eq: 8 tap FIR, 10b coeffs
 - Rx Eq: 5 tap DFE, 10b coeffs

PR-4 Equalization Simulations – Tyco Case 5

PR-4 Adaptive Eqⁿ Sims – Intel T32

PR-4 Equalization Simulations – Eye Diagrams

Channel	Eye width	Eye Height	Max NEXT/FEXT
	[UI]	[V]	[V _{p-p}]
Intel T32	0.154	0.205	0.205
Tyco Case #5	0.418	0.355	0.691

Michael Altmann IEEE 802.3ap Task Force - 21-Jan-05

PR-4 Simulation Summary

- Simulation conditions:
 - Noise filter: 2^{nd} order linear filter $\omega_0 = 6$ GHz & 10GHz
 - NEXT/FEXT & noise: None
 - Fixed coefficients, post-MMSE adaption
 - Linear tap values (no quantization)

PR-4 Simulation Summary

PR-4 Simulation Summary

Slide 18

PR-4 Simulation Summary – Eye Parameters

Channel	Eye width [UI]	Eye Height [V]		
Intel Channels (Peters)				
Intel B12	0.314	0.461		
Intel M12	0.277	0.341		
Intel T12	0.154	0.205		
Intel B8	0.264	0.343		
Intel M8	0.261	0.288		
Tyco Channels (D'Ambrosia)				
Case #1	0.315	0.506		
Case #2	0.375	0.691		

Summary

- Presented a PR-4 signaling proposal for 10Gbase-KR
- Leverages existing clauses for PCA, PMA and MDIO
- Leverages known PR-4 implementation advantages
- Includes Tx (FIR) and Rx (DFE) adaptive equalization
- Successful adaption simulations shown
- Successfully equalizes a range of Tyco and Intel (ATCA) backplanes