VITESSE

A Close Look at Statistical Eye and Issues

Majid Barazande-Pour

January 24-27 2005 IEEE 802.3ap Backplane Ethernet Task Force Interim Meeting Vancouver, CA

YOUR PARTNER FOR SUCCESS

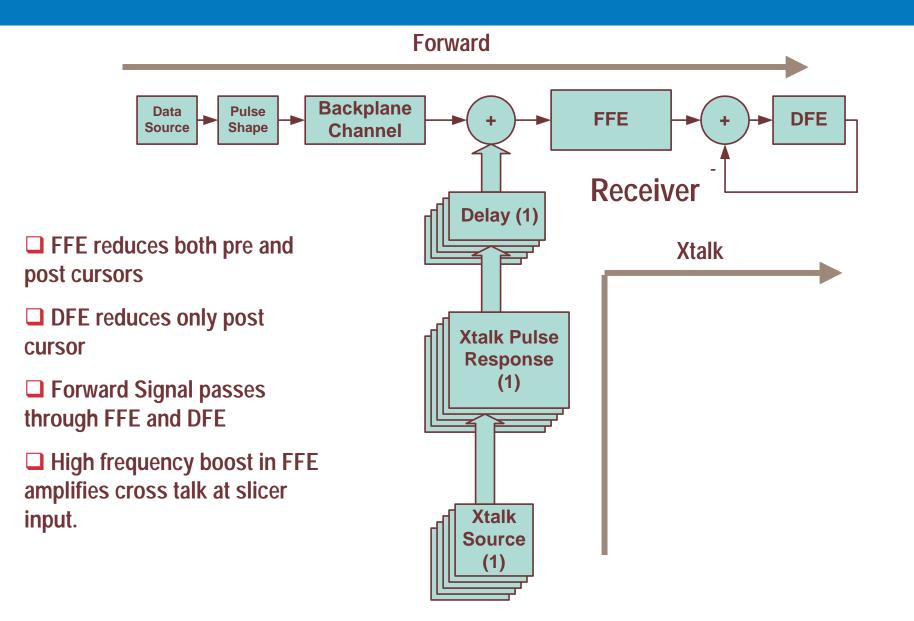
....

Outline

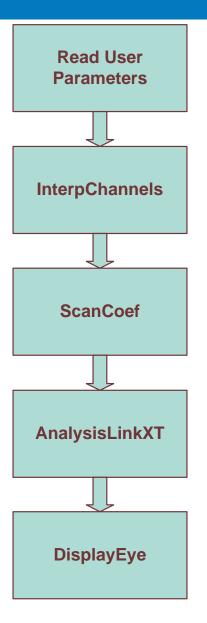
VITESSE

Introduction

- High level block diagram and flowcharts
- User Parameters
- Channels (interpChannels function)
- Receiver (FFE+ DFE, ExtractCursosrs function)
- BER bound calculation and display (CalcStatEye and DispalyEye functions)
- Conclusion


Introduction

VITESSE


StatEye:

- Contours of Constant CDF's for different amplitude and sampling times
- Effects of jitter, xtalk and ISI (TX filter, channel and Rx filter)
- StatEye was initially developed by Anthony Sanders and now is supported by StatEye organization.
- The original application was for channel compliancy in OIF.
- Receiver Structure was first only DFE.
- FFE was later added to receiver.
- Continuous time equalizer was also added to it by Xilinx for OIF.
- Question: Can StatEye be used for selecting proper modulation scheme?

Backplane Simulation Model

Staeye Algorithm

User Parameters

VITESSE

Bit Rate

Transmitter

- TX Jitter
 - peak-to-peak TX Jitter
 - random Gaussian Jitter
- > TX Pulse Shape (Rectangular, Gaussian)
- Modulation (NRZ, PAM4)
- TX Pre and Post Emphasis Range
- TX Filter Type(RC, Bessel, Single pole, Two pole)
- Receiver
 - ▶ FFE and DFE (number of taps)
- Channel and Xtalk S parameters
- Plot and Display Options

InterpChannels

VITESSE

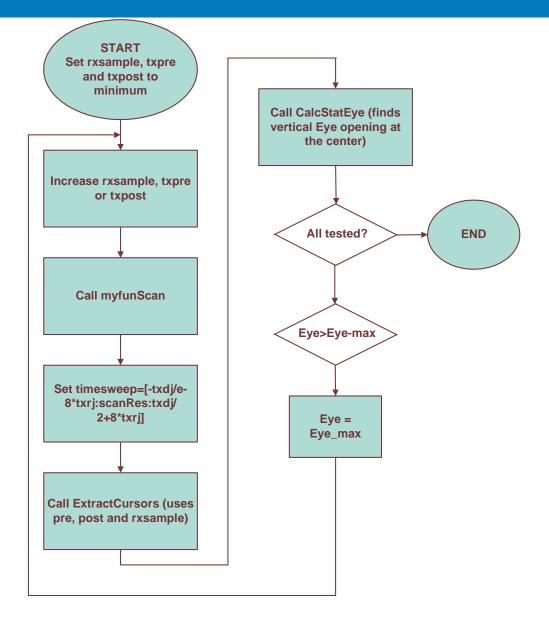
Channel types

- ► ABCD
- 4-port S parameter Measurements
- 2-port S parameter Measurements

Inputs

- RX and TX signal Pulse types`
 - Raised cosine, single pole, two pole, bessel

Outputs


- Frequency response of channel and xtalk's
 - Idata.Channel_data,
 - Idata.Aggressors_data
- Transmit pulse (idata.Tx_iSignal)

ScanCoeff

- Finds the optimum values of sampling time, precursor and post cursors by maximizing the vertical eye opening
- timeSweep {-txdj/2-8*txrj:scanResolution:txdj/2+8*txrj]
- Centre = 0 (only eye center)
- Function Calls
 - mtfunScan (sets timesweep)
 - ExtraxtCursors
 - Quick mode (start =-4, finish=20, 25 bits)
 - FFE and DFE applied and calculated only for forward signal, NOT by Xtalk
 - CaslStatEye (calculates histograms)
 - Calculates eye opening at the center

ScanCoef

ExtractCursors

- Calculates the cursor values for forward and xtalk signals
- ► FFE and DFE is done through calling functions
 - b do_ffe and d0_dfe
- ▶ The cursor values are used in CalcStatEye to find the CDF's.
- FFE and DFE optimization is done and applied only for forward signal.
- FFE and DFE optimization is done **separately**.

AnalysisLinkXT

- Sets timeSweep to
 - [-txdj/2-8*txrj-0.65:ScanResolution:txdj/2+8*txrj+0.65]
- Sets Centre=[-0.6:scanResolution:0.6] for scanning the eye
- Function Calls
 - ExtractCursors
 - accurate mode (start =-10, finish=60, 705 bits)
 - FFE and DFE applied and calculated separately and only for forward signal, NOT Xtalk.
 - CalcStatEye (calculates cursors' pdf's)

DisplayEye

- Dispalys countours
- Displays Bathtub

Conclusion

- In the current version of stateye (v 3.0e) :
 - Xtalk signals are not passed through FFE. High frequency boost in FFE increases the cross talk and reduces the eye opening.
 - ▶ FEE and DFE taps are not jointly optimized.
- Before modifying stateye for duobinary, receiver structure and optimization in stateye for NRZ should be verified and examined in details.