Simulation-Based Models of High Volume Manufacturing (HVM) ATCA Systems

William Peters Chi-te Chen Hyunjun Kim Qing-Lun Chen

- HVM systems introduction
- Modeling
- Correlation with measurements
- HVM models performance
- Conclusions

HVM Channel parameters

- Case 1: Enterprise
 - Material: Server N4000-6, BP N4000-6
 - Trace length (server + backplane + switch)
 - Min: 2" + 2" + 4"
 - Max: 8" + 12" + 10"
- Case 2: ATCA dual star (current focus)
 - Material: Server N4000-6, BP N4000-13
 - Trace length (server + backplane + switch)
 - Min: 2" + 2" + 4"
 - Max: 6" + 12" + 10"
- Case 3: ATCA small mesh
 - Material: IO N4000-6, BP N4000-6
 - Trace length (server + backplane + switch)
 - Min: 2" + 2" + 2"
 - Max: 8" + 10" + 8"

Measurement System Diagram

AdvancedTCA backplane system properties

- AdvancedTCA backplane system
- Based on backplane from peters_01_0704, kundu_01_0504
- 8 stripline signal routing layers
- Total board thickness = 187 mils
- Material: Nelco4000-13
 - Core DK=3.69 (2*2116)
 - Prepreg DK=3.66 (2116,2113)
 - DF=0.01
- Nominal differential impedance = 100 Ω
- Trace length up to 12"

Thickness(inches)			
0.0014		Layer1	Plane
0.009			
0.0014		Layer2	Routing
0.01			
0.0014		Layer3	Plane
0.009			
0.0014		Layer4	Routing
0.01			
0.0014		Layer5	Plane
0.009			
0.0014		Layer6	Routing
0.01			
0.0014		Layer7	Plane
0.009			
0.0014		Layer8	
0.01			
0.0014		Layer9	Plane
0.01			
0.0014		Layer10	Plane
0.01			
0.0014		Layer11	
0.009			
0.0014		Layer12	Plane
0.01			
0.0014		Layer13	
0.009			
0.0014		Layer14	Plane
0.01			
0.0014		Layer15	
0.009			
0.0014		Layer16	Plane
0.01			
0.0014		Layer17	
0.009			
0.0014		Layer18	Plane
0.1872	+/- 10%		

AdvancedTCA linecard properties

- 4 stripline signal routing layers
- Material:
 - Nelco 4000-6
 - DK=4.0
 - DF=0.022
- Nominal differential impedance = 100 Ω
- Trace length = 2-10"

LC stackup												
		Thicknes	s (mi	13)	Stub	lengthh						
Layer	1	1.4										
		5										
Layer :	2	0.7	Layer	2		76.9						
		25										
Layer	3	0.7	Layer	3		51.2						
		5										
Layer	4	0.7										
		7										
Layer	5	0.7										
		5										
Layer	6	0.7	Layer	6		32.1						
		25										
Layer	7	0.7	Layer	7		6.4						
		5										
Layer	8	1.4										
		84										

Simulation-based channel models

Models were generated component by component using physical geometry and material properties

- Vias, connector footprints: 3D Fullwave EM field solver models
- Stripline traces: Created with 2D transmission line field solver including dispersive losses (skin effect and dielectric loss).
- Connector: vendor provided sparameter model

Linecard SMA footprint via model

Backplane HMZD footprint via model

Configurable Scalable Channel Model

- A channel model is built from component models
- Can easily modify
 - Backplane, linecard impedance corner
 - Backplane, linecard trace length
 - Backplane, linecard routing layer (via stub)
 - Package model variations
 - DC Block
- Each board's impedance corner is varied independently. Vias and traces on the same board are varied dependently
- Can be used for worst-case analysis

ATCA model correlation system properties

- Dual star ATCA with switch blades in the center
- Max trace length on the backplane <10"
- Correlation
 - SDD21
 - SDD11,SDD22
 - Pulse response (ideal 100ps pulse)

	69 /	69					69 /•					
											•	
0 0 0												o

	r	i	ser ca	ırd	l 1	backplane					riser card 2						
channe l 🔽	mils 💽	-)	layer	•	mater 🔽	mils [•	layer	•	materis 🔻	mils	•	layer	•) mater i 🔽	HMZD1	HMZD2
1	4005		7		FR4	9202		11		N4000-13	3999)	2		FR4	AB	CD
2	3995		2		FR4	9556		13		N4000-13	4004	ł	7		FR4	CD	AB
3	4008		7		FR4	9203		11		N4000-13	4005	5	2		FR4	AB	CD
4	4010		2		FR4	9556		13		N4000-13	3987		7		FR4	CD	AB
5	4010		3		FR4	9201		15		N4000-13	4000	4000 6		FR4	EF	GH	
6	3993		6		FR4	9556		17		N4000-13	4004	ł	3		FR4	GH	EF
7	4046		6		FR4	9201		15	N4000-13		4003	4003 6		FR4	EF	GH	
8	3989		6		FR4	9556		17		N4000-13	3987	,	3		FR4	GH	EF
9	4019		7		FR4	7791		17		N4000-13	4039)	3		FR4	AB	CD
10	3968		2		FR4	8141		15		N4000-13	4040)	2		FR4	CD	AB
11	4025		6		FR4	7788		13		N4000-13	4012		7		FR4	EF	GH
12	4016		3		FR4	8145		11		N4000-13	4009)	6		FR4	GH	EF

Channel 1 – Insertion loss

Channel 1 – Return loss

matches adequately up to 5-6

Channel 1 – Pulse Response

0.45 Measured Modeled 0.4 0.35 Normalized Pulse Response 0.25 0.2 0.15 0.1 0.05 0 2.5 4.5 5.5 -0.5 0.5 1.5 3.5 5 6.5 7.5 0 1 2 3 4 6 7 time (ns)

Talkeetna Channel 1 Pulse Response

Channel 9 – Insertion loss

Channel 9 – Return loss

Channel 9 – Pulse Response

Backplane stub effect: SDD21

Line card trace length

N

6",10"

Backplane stub effect: SDD11

4" Line card trace length

6",10"

Linecard stub effect: SDD21

Line card trace length

2"

4

`s

Linecard stub effect: SDD11

HVM Model Result Conclusions

Return Loss Factors

- Minor effects from backplane layer and trace length up to 6GHz
- Mostly dominated by near end line card
 - Inversely related to line card trace length, major impact
 - Minor impacts from line card stubs below approx 8GHz, major impacts above

Insertion Loss Factors

- Major impact from backplane via stubs: longer stubs push null frequency lower. Minor impact < 3GHz
- Short traces on the backplane lead to increase IL ripple
- Line card loss impacts are greater than that of the backplane
- Line card stubs have minor impact below 8GHz, significant impact above 8GHz

Conclusions

Scalable Model

- Models based on the physical parameters of a dual star ATCA system have been generated.
- The simulated models have been well correlated to measured VNA data.
- Results can be used as basis for the development of a channel specification
- Additional models can be generated as needed