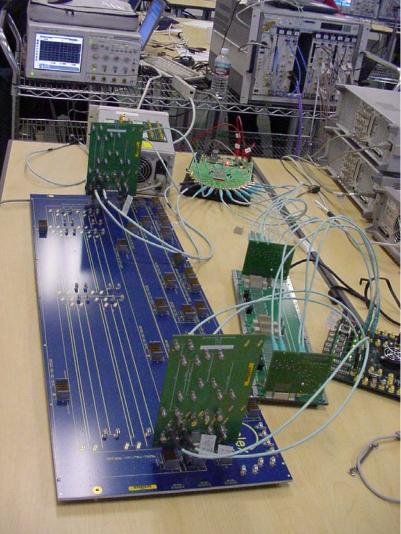
Crosstalk Summation on 10G Channels

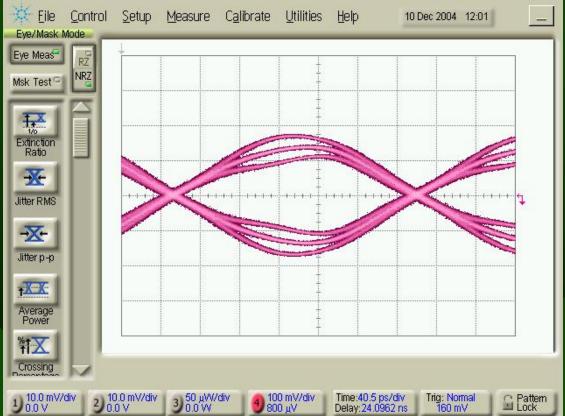
Brian Von Herzen, Ph.D.

www.FPGA.com


+1 775-790-5000

Brian@FPGA.com

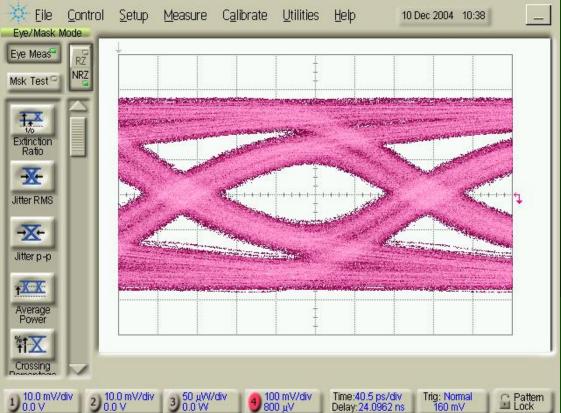
IEEE 802.3ap Presentation January 25, 2005


How should we sum crosstalk for our 10G channels?

- Three cases to consider
- 1. Frequency locked
- 2. Plesiochronous frequency locked (
 - 100 ppm)
- 3. Random frequency.
- Let's consider each of these 3 cases separately.

Crosstalk File Control Setup Measure Calibrate Utilities Help 10 De

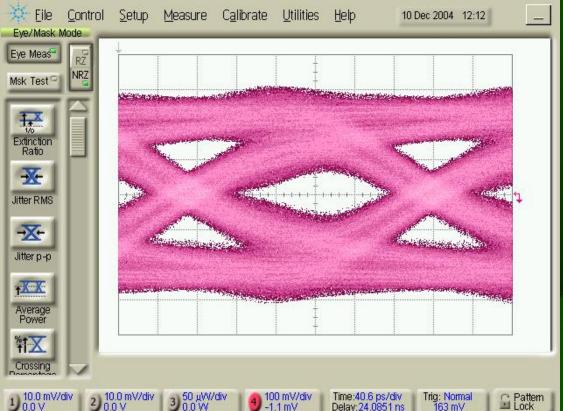
- Frequency locked crosstalk subtracts directly from the voltage margin of an eye
- Courtesy Tim Tan, Ransom <u>Stephens, Agilent</u>


 This example shows a clock signal with an aggressor data signal that is pi/2 out of phase with the clock signal.

Case #1: Frequency Locked Crosstalk

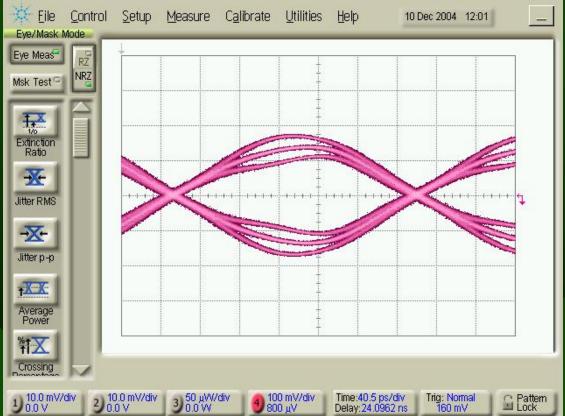
 If the crosstalk sources are frequency locked, their fields superimpose linearly and they subtract linearly from the output margin.

Crosstalk Eile Control Setup Measure Calibrate Utilities Help 10 Der


- Data gets affected in a way similar to the clock example:
- Courtesy Tim Tan, Ransom Stephens, Agilent

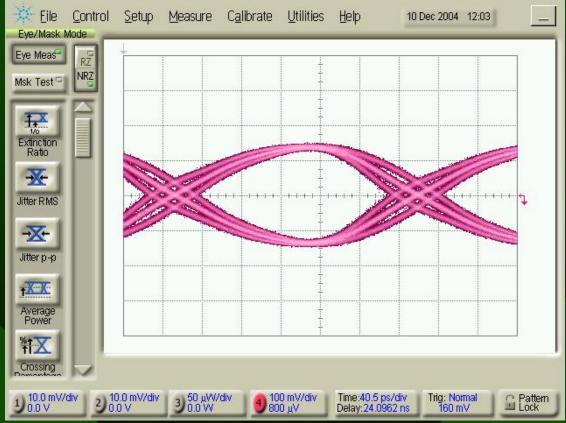
• This example shows a data signal with no crosstalk.

Crosstalk Eile Control Setup Measure Calibrate Utilities Help 10 Der


- Data gets affected in a way similar to the clock example:
- Courtesy Tim Tan, Ransom Stephens, Agilent

 This example shows a data signal with an aggressor data signal that is pi/2 out of phase from the victim data signal.

Crosstalk File Control Setup Measure Calibrate Utilities Help 10 De


- Frequency locked crosstalk subtracts directly from the voltage margin of an eye
- Courtesy Tim Tan, Ransom <u>Stephens, Agilent</u>

 This example shows a clock signal with an aggressor data signal that is pi/2 out of phase with the clock signal.

Crosstalk File Control Setup Measure Calibrate Utilities Help 10 Der

- In-phase crosstalk affects the jitter margin of the eye more than the voltage margin
- Courtesy Tim Tan, Ransom Stephens, Agilent

• This example shows a clock signal with an aggressor data signal that is in phase with the clock signal.

Case #1: Frequency Locked Crosstalk Analysis

- Aggressor data signals can either be rising, falling, or transitionless
- Aggressor data can be in phase or out of phase.
- Random data has 25% probability of a rising transition
- 10G data has a 25% probability of being in phase with other aggressors assuming >0.25 UI transition time

Case #1: Frequency Locked Crosstalk Analysis

- Assume 4 nearest-neighbor aggressors:
- They have 25% probability of transitioning in the same direction.
- They have 25% probability of being in the same phase
- = $(1/4)^{4} * (1/4)^{4} = (1/2)^{16} = 1.5E-5$
- Therefore with probability 1.5E-5, there will be 4 aggressors adding linearly to the victim at the same part of the eye. Voltage summation, not RMS.

Case #2: Plesiochronous frequency locked

- Plesiochronous systems are usually specified at +/- 100 PPM between transmitter and receiver
- If one transmitter is at +100 ppm and the other transmitter is at -100 ppm, at 10G a one-UI difference takes ½ microsec. Or 5000 UI
- 1/4 UI phase offset takes 1250 UI.

Case #2: Plesiochronous frequency locked

- For physical interactions of less than 1250 UI in duration, plesiochronous systems can be treated as frequency locked for purposes of crosstalk analysis.
- Same conclusion holds: crosstalk adds linearly.
- Probability of a 4-aggressors attack assuming random phase and random data is still 1.5E-5.
 If this event causes an error then the error rate will also be 1.5E-5.

Case #3: Random Frequency

 In the case of random frequency aggressors far from the victim frequency, the distribution of noise approaches a gaussian profile in the case of dozens of similar-amplitude aggressors.

- 1e-17 and all equal aggressors-- = 2^56 , 56 aggressors needed, if they are all equal

• In this case RMS summation is more appropriate.

Conclusion

- For frequency locked and plesiochronous aggressors, linear voltage summation of crosstalk is required for accurate results even when the aggressors transmit random data patterns.
- For a large number of random-frequency aggressors, RMS summation may be appropriate.
- Future work is needed to include a full impulse response of each aggressor in place of only the1st transition