10 Gb/s Duobinary Signaling over Electrical Backplanes

Experimental Results and Discussion

J. Sinsky, A. Adamiecki, M. Duelk, H. Walter, H. –J. Goetz, M. Mandich

contact: sinsky@lucent.com

802.3AP Backplane Ethernet
Supporters

- John D’Ambrosia* Tyco
- John Khoury Vitesse
- Majid Barazande-Pour Vitesse
- Glen Koziuk Vitesse

*This contributor supports multi-level signaling standardization for certain applications. His support does not necessarily reflect the support of duobinary over competing technology solutions.
Talk Outline

- Motivation – Why Duobinary?
- Description of duobinary signaling
- Proposed Architecture
- Measured results - 10 Gb/s duobinary transmission over Tyco backplanes
- Comparison of eye diagrams for optimally pre-emphasized formats: PAM-4, duobinary, and NRZ using the Quadroute Backplane system – *jitter discussion and cross-talk comments*
- The Future – towards 4x25 Gb/s *electrical* backplanes
- Conclusion
So Why Duobinary?

- **The Bottom Line**: for the channel models of interest, the other solutions are not adequate
 - NRZ requires too much bandwidth
 - PAM-4 requires too much complexity and power

- Duobinary provides a simple, low-power approach to sending 10-Gb/s data through legacy and non-legacy backplane systems.
 - *It is a logical solution*: it takes advantage of the low pass roll off response of the typical backplane channel

- Simpler implementation than PAM-4
 - Duobinary requires 2 decision thresholds.
 - PAM-4 requires 3.

- Less bandwidth than NRZ

- Easy scalability to higher frequencies
 - Migration to 40 Gb/s over electrical channels should be possible!

- Simple backward compatibility with NRZ systems
What is Duobinary Signaling?

- A three level signaling scheme that uses intersymbol interference (ISI) in a controlled way instead of trying to eliminate it.

- First described by Adam Lender, 1963.

- Has been used for low speed (KHz) data communications.

- A different formulation of duobinary signaling has recently been used in the optical transmission.

Typical Eye Diagram

Understanding Duobinary Signal Generation

- When NRZ data is passed through the proper linear circuit, an ideal duobinary signal will result.

- Creating a duobinary signal from NRZ requires a delay and add of two sequential NRZ bits.

- This can be accomplished in multiple ways
 - Delay and add logic
 - Appropriate analog or digital filters that create the correct intersymbol interference (ISI)
 - Pre-emphasis, equalization or both
 - A backplane channel that creates the proper ISI
 - Some additional spectral reshaping is required for real backplanes
 - A combination of filtering and a backplane
Proposed Duobinary Signaling Concept for Backplane Transmission

We reshape the binary data spectrum from the transmitter such that the resulting waveform available at the receiver after traveling through the backplane is a duobinary signal.

The backplane is preceded by a simple filter that modifies the response of the communication channel so that it looks like an ideal duobinary data filter. As a result, the binary data from the transmitter appears as duobinary data at the receiver.

The duobinary data is converted to NRZ using a high-speed duobinary-to-binary data converter and then presented to the receiver.
Architecture Migration from NRZ to Duobinary

NRZ Link

TX Logic → TX I/O with pre-emphasis → Back-plane → RX I/O → Equalization & CDR

Duobinary Link

TX Logic → TX I/O with pre-emphasis → Back-plane → 3 level RX I/O → Duo-to-binary converter → Equalization & CDR

*May not be necessary, TBD

Binary data receiver

Binary data receiver!!
The Tyco Backplanes

Backplane Characteristics

<table>
<thead>
<tr>
<th>Board Name</th>
<th>Nelco Dielectric</th>
<th>Trace Geometry (width, space, width)</th>
<th>Connector Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quadroute@</td>
<td>4000-6</td>
<td>4,6,4 (mils)</td>
<td>HM-ZD</td>
</tr>
<tr>
<td>XAUI&</td>
<td>4000-2</td>
<td>10,14,10 (mils)</td>
<td>HM-ZD</td>
</tr>
<tr>
<td>XAUI%</td>
<td>4000-6</td>
<td>10,14,10 (mils)</td>
<td>HM-ZD</td>
</tr>
</tbody>
</table>

@modified version of commercial board
&commercially available
%modified version of commercial board
Transfer function through the Quadroute backplane (4000-6)*

<table>
<thead>
<tr>
<th>Link</th>
<th>3 dB Bandwidth</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 inch</td>
<td>1.81 GHz</td>
</tr>
<tr>
<td>20 inch</td>
<td>664 MHz</td>
</tr>
<tr>
<td>34 inch</td>
<td>410 MHz</td>
</tr>
</tbody>
</table>

Note: IEEE model is per May 25, 2004 IEEE802.3AP meeting – Goergen02_0504.pdf, pg. 10.

*modified version of the commercial board
Signal Evolution Through the System – Measured Performance

- **Binary Data Transmitter**
 - **Precoder**
 - **FIR Filter**
 - **Electrical Backplane**
 - **Duobinary to Binary Converter**
 - **Binary Data Receiver**

- **2 taps**
 - **Tyco Quadroute 4000-6 (34” trace)**

- **Pre-emphasized eye**
 - **50 ps/div**

- **Recovered binary signal**
 - **50 ps/div**

- **Duobinary signal out of the backplane**
 - **Decision thresholds**
 - **50 ps/div**

Lucent Technologies 2004
Test Setup and Experimental Results

Test Setup and Experimental Results

- **Trace length**
 - 20 in. (~51 cm)
 - 34 in. (~86 cm)
- **Data rate**
 - 10 Gb/s
 - 10 Gb/s
- **Sequence length**
 - $2^{31}-1$
 - $2^{23}-1$
- **Bit error rate**
 - <10^{-13}\text{**}
 - <10^{-13}\text{**}
- **Backplanes tested**
 - Quadroute, XAUI (both)
 - Quadroute, XAUI (both)
- **FIR architecture**
 - 2-tap
 - 2-tap

Note: This was a time limited measurement. We observed 0 errors in a 20 minute measurement period on each of the six traces discussed above.
Comparison of pre-emphasized formats: NRZ, PAM-4, and Duobinary

Eye Diagrams Through a Tyco Quadroute* Backplane

Simulation Model

Either NRZ, PAM-4, or Duobinary

Optimized for each data format

Based on measured S-Parameters

Data Transmitter → 2-tap FIR Filter → Electrical Backplane → Oscilloscope Display

600 mVpp single ended

Simulation Notes

• 10 Gb/s data transmission
• All inputs are constrained to a 600 mVpp single-ended amplitude at the OUTPUT of the 2-tap FIR filter
• No noise sources
• Backplane S-Parameters were measured on a vector network analyzer
• PRBS Length = 2^{10}-1
• 2-tap FIR optimization was accomplished by minimizing the BER obtained through semianalytic simulation. The relative tap amplitude and delay parameters were swept to obtain the minimum BER.

*Dielectric is Nelco 4000-6. Modified version of commercial board.
Comparison of pre-emphasized formats: NRZ, PAM-4 and Duobinary

Single-ended backplane output resulting from 10.0 Gb/s transmitter with 600 mVpp single-ended amplitude including 2-tap FIR filter, PRBS $2^{10}-1$

Tyco Quadroute 34” Link

NRZ

PAM-4

Duobinary

Denotes NRZ eye opening measure

15 mV/DIV : 30 ps/DIV

15 mV/DIV : 60 ps/DIV

15 mV/DIV : 30 ps/DIV

Tyco Quadroute 6” Link

NRZ

PAM-4

Duobinary

15 mV/DIV : 30 ps/DIV

15 mV/DIV : 60 ps/DIV

15 mV/DIV : 30 ps/DIV

80 mV/DIV : 30 ps/DIV

80 mV/DIV : 60 ps/DIV

80 mV/DIV : 30 ps/DIV
Comparison of pre-emphasized formats: NRZ, PAM-4, and Duobinary

Summary of Simulation Results*

For Tyco Quadroute Links
(Using optimized 2-tap FIR pre-emphasis)

<table>
<thead>
<tr>
<th></th>
<th>6” Link (#1)</th>
<th>20” Link (#5)</th>
<th>34” Link (#8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NRZ</td>
<td>78 mVpp</td>
<td>37 mVpp</td>
<td>10 mVpp</td>
</tr>
<tr>
<td>DUO</td>
<td>137 mVpp</td>
<td>85 mVpp</td>
<td>25 mVpp</td>
</tr>
<tr>
<td>PAM4</td>
<td>101 mVpp</td>
<td>51 mVpp</td>
<td>15 mVpp</td>
</tr>
</tbody>
</table>

Minimum Single-ended Vertical Eye Opening at Threshold:

Horizontal Eye Opening at Threshold:

<table>
<thead>
<tr>
<th></th>
<th>6” Link (#1)</th>
<th>20” Link (#5)</th>
<th>34” Link (#8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NRZ</td>
<td>65 ps</td>
<td>71 ps</td>
<td>69 ps</td>
</tr>
<tr>
<td>DUO</td>
<td>39 ps</td>
<td>52 ps</td>
<td>49 ps</td>
</tr>
<tr>
<td>PAM4</td>
<td>94 ps</td>
<td>84 ps</td>
<td>84 ps</td>
</tr>
</tbody>
</table>

*Based on measured S-Parameter data
Comments on Cross-talk*

- To first order, cross-talk increases with frequency
 - NRZ requires roughly twice the bandwidth of duobinary and PAM-4

- To first order, susceptibility to cross-talk increases with formats that require higher signal-to-noise
 - PAM-4 requires about 7 dB more SNR than NRZ to achieve the same bit error rate.
 - *Duobinary requires about 2.1 dB more SNR than NRZ to achieve the same bit error rate.*

- For channels such as the one proposed by this task force (per Goergen, May 2004), duobinary should be the winner because…
 - Multilevel signaling is needed due to the steep backplane rolloff.
 - Duobinary provides nearly 5 dB SNR advantage over PAM-4 while occupying the same bandwidth.

* For detailed simulations showing the impact of cross-talk on duobinary signaling, see the Vitesse presentation, IEEE 802.3AP, July 2004, entitled, “Crosstalk and Receiver Equalization for 10G Serial Ethernet.”
The Future – Electrical 25+ Gb/s Transmission!

- What is after 10 Gb/s?
 - Duobinary enabled 25+ Gb/s!

- Our duobinary-to-binary decoder should scale to 40 Gb/s
 - Demonstration of concept

- Requires improved electrical channel compared with 10Gb/s
 - However, microwave-quality electrical backplanes are obviously much more attractive than moving to an optical backplane

- Simulation of 30 Gb/s transmission based on differential S-Parameter measurements
 - Three-tap pre-emphasis
 - Duobinary signaling
 - Board Characteristics
 - FR4 backplane – 50cm
 - Rogers interface cards
 - Back-drilled vias
 - The use of a microwave substrate (e.g. Rogers) for the backplane would result in a larger eye and the potential for a working link.
Conclusion

- **Electrical duobinary signaling is the logical choice for providing 10 Gb/s transmission over both legacy and non-legacy backplane systems.**
 - It provides spectral compression and only a 2.1 dB SNR penalty over NRZ, providing the best of both worlds.
 - It takes advantage of the natural roll off of backplane systems instead of trying to work around it.

- Using the proposed technique, we have demonstrated 10 Gb/s data transmission over legacy backplanes, specifically the Tyco Quadroute and XAUI using HM-ZD connectors.

- Implementation is very similar to standard NRZ except for the need for a precoder, a duobinary-to-binary converter, and different taps weights for pre-emphasis circuitry...The Result...a simpler and lower power solution than can be provided by other techniques.