CRC8_T_BLOCK_TYPE = {S, D, T, T4, I, C, E}
This function classifies each 36bit raw XGMII vector as to belonging to one of 7 types depending on its contents.

Values:

S: The vector contains an /S/ in its first character, and all other characters are data characters
D: The vector contains 4 data characters
T: The vector contains a /T/ in one of its first 3 characters, all characters before the /T/ are data characters, and all characters after the /T/ are valid control characters other than /O/, /S/, or /T/.
T4: The vector contains a /T/ in its last character, and all other characters are data characters.
I: The vector contains a valid control character other than /O/, /S/, or /T/ in its first character and and all other characters are valid control characters.
C: The vector contains an /O/, /S/, or /T/ in its first character and and all other characters are valid control characters.
E: The vector does not meet the criteria for any other value.
CT_TYPE(tx_raw<35:0>)

Returns the CRC8_T_BLOCK_TYPE of the tx_raw<35:0> bit vector.

CRC8_ENCODE(tx_raw<35:0>)
Encodes the 36-bit XGMII vector returning a modified XGMII vector tx_coded<35:0>. Depending on the SM state this modified value replaces the raw XGMII data sent on to the 64b66 Tx SM. The encode function shall encode the vector as specified in the following table.
	tx_raw
	tx_coded

	R0
	R1
	R2
	R3
	M0
	M1
	M2
	M3

	/T/
	X
	X
	X
	CRC8
	/T/
	R2
	R3

	X
	/T/
	X
	X
	R0
	CRC8
	/T/
	R3

	X
	X
	/T/
	X
	R0
	R1
	CRC8
	/T/

	X
	X
	X
	/T/
	R0
	R1
	R2
	CRC8

	Any

non-/T/

Control
	X
	X
	X
	/T/
	R1
	R2
	R3

	Else
	X
	X
	X
	X

[image: image1.wmf]TX_C

 tx_coded <= tx_raw

TX_D

 tx_coded <= tx_raw

CT_TYPE(tx_raw) = D

CT_TYPE(tx_raw) = S

TX_T4

 tx_coded <= CRC8_ENCODE(tx_raw)

TX_T

 tx_coded <= CRC8_ENCODE(tx_raw)

TX_IPG

 tx_coded <= CRC8_ENCODE(tx_raw)

CT_TYPE(tx_raw) = T4

CT_TYPE(tx_raw) = T

CT_TYPE(tx_raw) = I

D

D

CT_TYPE(tx_raw) = S

TX_E

 tx_coded <= //E//

CT_TYPE(tx_raw) = S

CT_TYPE(tx_raw) = (E + S + C + I)

D

CT_TYPE(tx_raw) = (E+D+T+T4+C+I)

D

CT_TYPE(tx_raw) = S

Reset

CT_TYPE(tx_raw) = (E+D+T+T4+C+I)

CT_TYPE(tx_raw) = (E+D+T+T4+C+S)

CT_TYPE(tx_raw) = (E+D+T+T4+C+I)

CT_TYPE(tx_raw) = (E+D+T+T4+C+I)

CRC8_R_BLOCK_TYPE = {S, D, T12, T34, C, E}

This function classifies each 36bit raw XGMII vector as to belonging to one of 7 types depending on its contents.

Values:

S: The vector contains a /S/ in its first character, and all other characters are data characters
D: The vector contains 4 data characters.
T12: The vector contains a /T/ in one of its first 2 characters, and all characters before the /T/ are data characters.
T34: The vector contains a /T/ in one of its last 2 characters, and all characters before the /T/ are data characters..
C: The first character is a valid control character other than /T/, all other characters are valid control characters.
E: The vector does not meet the criteria for any other value.
CR_TYPE(vector<35:0>)
Returns the CRC8_R_BLOCK_TYPE of a <35:0> bit XGMII vector.

CRC8_DECODE(rx_raw<35:0>)
Decodes the 36-bit XGMII vector returning a modified XGMII vector rx_coded<35:0>. Depending on the SM state this modified value replaces the raw XGMII data output from the layer. The decode function shall decode the vector as specified in the following table.

	rx_raw

	next_rx_raw
	rx_coded

	R0
	R1
	R2
	R3
	R0‘
	R1‘
	M0
	M1
	M2
	M3

	X
	Good CRC8
	/T/
	X
	X
	X
	R0
	/T/
	/I/
	R3

	X
	X
	Good CRC8
	/T/
	X
	X
	R0
	R1
	/T/
	/I/

	X
	X
	X
	Good CRC8
	/T/
	X
	R0
	R1
	R2
	/T/

	X
	X
	X
	X
	Good CRC8
	/T/
	R0
	R1
	R2
	R3

	X
	Bad CRC8
	/T/
	X
	X
	X
	/E/
	/T/
	/I/
	R3

	X
	X
	Bad CRC8
	/T/
	X
	X
	R0
	/E/
	/T/
	/I/

	X
	X
	X
	Bad CRC8
	/T/
	X
	R0
	R1
	/E/
	/T/

	X
	X
	X
	X
	Bad CRC8
	/T/
	R0
	R1
	R2
	/E/

	/T/
	X
	X
	X
	X
	X
	/I/
	R1
	R2
	R3

	X
	/T/
	X
	X
	X
	X
	/T/
	/I/
	R2
	R3

	Else
	X
	X
	X
	X

[image: image2.wmf]RX_C

 rx_coded <= rx_raw

RX_D

 rx_coded <= rx_raw

CR_TYPE(rx_raw) = S

RX_T12

 rx_coded <= CRC8_DECODE(rx_raw)

RX_T34

 rx_coded <= CRC8_DECODE(rx_raw)

RX_IPG

 rx_coded <= CRC8_DECODE(rx_raw)

CR_TYPE(rx_raw) = (D+E) *

CR_TYPE(next_rx_raw) = T12

CR_TYPE(rx_raw) = T34

D

D

CR_TYPE(rx_raw) = S

CR_TYPE(rx_raw) = S

CR_TYPE(rx_raw) = (S + C)

D

CR_TYPE(rx_raw) = (E+D+T12+T34+C)

Reset

CR_TYPE(rx_raw) = (E+D+T12+T34+C)

CR_TYPE(rx_raw) = (E+D+T12+T34+C)

CR_TYPE(rx_raw) = (D+E) *

CR_TYPE(nextrx_raw) != T12

� EMBED Visio.Drawing.6 ���

� EMBED Visio.Drawing.6 ���

[image: image3.wmf]TX_C

 tx_coded <= tx_raw

TX_D

 tx_coded <= tx_raw

CT_TYPE(tx_raw) = D

CT_TYPE(tx_raw) = S

TX_T4

 tx_coded <= CRC8_ENCODE(tx_raw)

TX_T

 tx_coded <= CRC8_ENCODE(tx_raw)

TX_IPG

 tx_coded <= CRC8_ENCODE(tx_raw)

CT_TYPE(tx_raw) = T4

CT_TYPE(tx_raw) = T

CT_TYPE(tx_raw) = I

D

D

CT_TYPE(tx_raw) = S

TX_E

 tx_coded <= //E//

CT_TYPE(tx_raw) = S

CT_TYPE(tx_raw) = (E + S + C + I)

D

CT_TYPE(tx_raw) = (E+D+T+T4+C+I)

D

CT_TYPE(tx_raw) = S

Reset

CT_TYPE(tx_raw) = (E+D+T+T4+C+I)

CT_TYPE(tx_raw) = (E+D+T+T4+C+S)

CT_TYPE(tx_raw) = (E+D+T+T4+C+I)

CT_TYPE(tx_raw) = (E+D+T+T4+C+I)

[image: image4.wmf]RX_C

 rx_coded <= rx_raw

RX_D

 rx_coded <= rx_raw

CR_TYPE(rx_raw) = S

RX_T12

 rx_coded <= CRC8_DECODE(rx_raw)

RX_T34

 rx_coded <= CRC8_DECODE(rx_raw)

RX_IPG

 rx_coded <= CRC8_DECODE(rx_raw)

CR_TYPE(rx_raw) = (D+E) *

CR_TYPE(next_rx_raw) = T12

CR_TYPE(rx_raw) = T34

D

D

CR_TYPE(rx_raw) = S

CR_TYPE(rx_raw) = S

CR_TYPE(rx_raw) = (S + C)

D

CR_TYPE(rx_raw) = (E+D+T12+T34+C)

Reset

CR_TYPE(rx_raw) = (E+D+T12+T34+C)

CR_TYPE(rx_raw) = (E+D+T12+T34+C)

CR_TYPE(rx_raw) = (D+E) *

CR_TYPE(nextrx_raw) != T12

_1182083512.vsd

_1182759471.vsd

