CRC8_T_BLOCK_TYPE = {S, D, T, T4, I, C, E}
This function classifies each 36bit raw XGMII vector as to belonging to one of 7 types depending on its contents.

Values:


S: The vector contains an /S/ in its first character, and all other characters are data characters
D: The vector contains 4  data characters
T: The vector contains a /T/ in one of its first 3 characters, all characters before the /T/ are data characters, and all characters after the /T/ are valid control characters other than /O/, /S/, or /T/.
T4: The vector contains a /T/ in its last character, and all other characters are data characters.
I: The vector contains a valid control character other than /O/, /S/, or /T/ in its first character and and all other characters are valid control characters.
C: The vector contains an /O/, /S/, or /T/ in its first character and and all other characters are valid control characters.
E: The vector does not meet the criteria for any other value.
CT_TYPE(tx_raw<35:0>)

Returns the CRC8_T_BLOCK_TYPE of the tx_raw<35:0> bit vector. 

CRC8_ENCODE(tx_raw<35:0>)
Encodes the 36-bit XGMII vector returning a modified XGMII vector tx_coded<35:0>. Depending on the SM state this modified value replaces the raw XGMII data sent on to the 64b66 Tx SM. The encode function shall encode the vector as specified in the following table.
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CRC8_R_BLOCK_TYPE = {S, D, T12, T34, C, E}

This function classifies each 36bit raw XGMII vector as to belonging to one of 7 types depending on its contents.

Values:


S: The vector contains a /S/ in its first character, and all other characters are data characters
D: The vector contains 4 data characters.
T12: The vector contains a /T/ in one of its first 2 characters, and all characters before the /T/ are data characters.
T34: The vector contains a /T/ in one of its last 2 characters, and all characters before the /T/ are data characters..
C: The first character is a valid control character other than /T/, all other characters are valid control characters.
E: The vector does not meet the criteria for any other value.
CR_TYPE(vector<35:0>)
Returns the CRC8_R_BLOCK_TYPE of a <35:0> bit XGMII vector. 

CRC8_DECODE(rx_raw<35:0>)
Decodes the 36-bit XGMII vector returning a modified XGMII vector rx_coded<35:0>. Depending on the SM state this modified value replaces the raw XGMII data output from the layer. The decode function shall decode the vector as specified in the following table.
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