

Measured Dispersion Compensation Performance on Intel Backplane Channels

Matt Brown
Quake Technologies
mbrown@quaketech.com

Acknowledgements

Thanks to Intel for providing the backplane infrastructure and related support.

Introduction

- These measurements represent the first phase of a series of measurements (see next slide). The main focus of this phase was to assess the ability to equalize the data signals traversing a backplane channel.
- Three sets of measurements are presented:
 - Unequalized pulse response of channels
 - Equalized error performance
 - Equalized eye opening

Measurement Phases

- a sub-set of channels was considered: 8", 12", 20", and 32"
- PRBS7 was used for most measurements
- interfering signals were not included
- drive levels were not considered
- In the sub-sequent phases, the following will also be considered:
 - the remaining channels
 - use PRBS15 and/or PRBS31
 - measure the characteristics and effect of crosstalk
 - effect of drive level
 - other backplanes

EDC Device

- The EDC device (shown below) equalizes the distorted data signal from the backplane and recovers the data signal.
- A monitor point permits observation of the equalized data signal before slicing and retiming.

Pre-Emphasis Emulation

- To emulate the effect of a 2-tap Tx FFE, a linear pre-emphasis board (shown below) was employed.
- Pre-emphasis (same as RPST defined in 72.6.1.11), expressed in dB, is defined as the ratio of the peak voltage to the steady state voltage at the output when a step is applied to the input.
- The measured step response for three configurations (3, 6, and 9 dB pre-emphasis) are shown below.

Pulse Response – Test configuration

- The block diagram below illustrates the test configuration for the pulse response tests.
- For 0 dB pre-emphasis, the PE (pre-emphasis) board was removed.
- The repeating pattern consisted of a single "one" pulse followed by 512 "zero" pulses.

Pulse Response – Measured Results

Measured pulse responses for all channels without pre-emphasis are shown on the three graphs on this slide.

Pulse Response – Measured Results, T32 + Pre-Emphasis

- The effect of pre-emphasis on the channel T32 pulse response is shown in the slide below.
- Note that the "friendliest" pulse response occurs with 9 dB pre-emphasis.

Pulse Response – Comparison with Simulated Pulses

- The following slide below compares the measured pulse response of each channel with the simulated pulse response derived from the measured s-parameters.
- The simulation model:
 - Tx: square pulse, 100 ps, 9.0 GHz BT LPF
 - Channel: s-parameter file (peters_01_0904_<channel>_thru.s4p)
 - Rx: 7.5 GHz BT LPF

Pulse Response – Comparison with Simulated Pulses Plots NEW

EDC/Backplane Integration – Test Configuration

- The block diagram below illustrates the test configuration for the EDC/backplane integration tests (for tests involving PRBS31 later an Anritsu MP1763B Pattern Generator was substituted).
- For 0 dB pre-emphasis, the PE board was removed.

EDC/Backplane Integration – Error Performance

- For each channel/PE combination the errors were counted on the recovered data.
- For all channels except T32, error-free data was recovered without preemphasis.
- T32 was error-free with 6 dB of pre-emphasis.
- Error-free is defined as no errors counted in 5 minutes or more.
- Test conditions: baud rate = 10.3125 Gbps, pattern = PRBS7

EDC/Backplane Integration – Eye Opening

- "Best" eye opening (summarized for each channel on the following slide) was achieved with pre-emphasis ranging from 0 to 9 dB.
- Eye opening was measured as a ratio of default DCA parameters Eye Amplitude and Eye Height. Eye amplitude is the difference between the mean 1 and mean 0 values. Eye height defined as the eye amplitude minus 3 times the standard deviation of one and zero. Amplitude and standard deviation were measured over 10% of the eye width.
- Test conditions: baud rate = 10.3125 Gbps, pattern = PRBS7

EDC/Backplane Integration – Results Summary

Channel	PE required to achieve error- free performance	PE required to achieve best eye opening
	(dB)	(dB)
B8	0	0
B12	0	0
B20	0	6
B32	0	9
M8	0	0
M12	0	0
M20	0	9
M32	0	9
Т8	0	6
T12	0	6
T20	0	9
T32	6	9

EDC/Backplane Integration – Equalized eye diagrams for Channel T12

Channel: T12 Pattern: PRBS7 Mode: Full auto

Channel: T12 Pattern: PRBS31 Mode: Full auto

Channel: T12 Pattern: PRBS7 Mode: DFE only

Channel: T12 Pattern: PRBS31 Mode: DFE only

Test Results Summary

- Observations based upon the tests completed so far
 - The EDC operates error free on all channels of length {8", 12", 20", 32"} and layers {B, M, T}.
 - To operate error-free pre-emphasis was required only on T32.
 - "Best" eye opening required anywhere from 0 dB to 9 dB of pre-emphasis.
 - "Best" eye opening is achievable using only the DFE at the receiver.
 - The measured pulse responses match well with the simulated pulse responses derived from measured s-parameters.

Conclusions

- Equalization of backplane channels is possible with realizable equalizers.
- Equalization of backplane channels is possible with architectures implied in the draft and assumed in related simulations.
- Simulated pulse response based on measured s-parameters is accurate.