IEEE802.3ap

TX and RX Return Loss Simulations and Proposals for KX, KX4, KR Specifications

Shannon Sawyer and Bob Manley June 17, 2005

Objective

Perform appropriate simulations on realistic package and channel models to complete the return loss specifications for the TX and RX on 10GBASE-KX, KX4, and KR port types.

- Define models and simulation parameters
- Review Results
- Conclusion and Proposal

Simulation Models

- 1. R and C were varied independently on TX and RX to uncover worse case combination for each data rate (1.25, 3.125, and 10.3125Gbps).
- 2. Eye diagrams and Return Loss were plotted

Eye Diagrams 10GBASE-KX (1.25Gbps)

Eye Diagrams 10GBASE-KX4 (3.125Gbps)

IEEE802.3ap

Eye Diagrams 10GBASE-KR (10.3125Gbps)

Good arguments for deemphasis and DFE ©

Not useful for this analysis

IEEE802.3ap

Return Loss

Receiver

Return Loss(f) >= 12dB for 100MHz $\leq f \leq 625$ MHz

Return Loss

Transmitter

Return Loss(f)

>= 12dB for 100MHz <= f < 625MHz

Conclusions

- Channel model's losses isolate RX to TX C and L relationships
- TP1 and TP4 high freq return losses dominated by C variation
- Increased L beyond 0.3nH will create return loss < 3dB at 5GHz and is unacceptable
- Worst case TX is 60ohm and 800fF and is acceptable limit
- Worst case RX is 40ohm and 800fF and is acceptable limit
- KX and KX4 TX and RX return loss spec should be same as CX4
- KR TX and RX spec should change to equation on page 8

