

Signaling Method Performance Results

IEEE Atlanta March 2005 Steve Anderson, Brian Seemann

Supporters

- Aniruddha Kundu, Intel
- Luke Chang, Intel

Presentation Flow

- Assumptions
- Algorithm approach
- Eye maps
- Conclusions

Purpose

- Find Equalization For Duobinary and CENRZ For 24 Representative IEEE Channels
- Generate Eye Diagrams
 - Measure Vertical and Horizontal Eye Opening
 - Set Limits and Determine Which Channels Served by Each Method
- Show perspectives on the relative performance of signaling methods
- Determine Which Signaling Method Covers Larger Number of Channels

Included in Model

- Channel
 - 0.4 pf added at each port (package), not IEEE model
 - 7.5 GHz single pole (Tx shaping)
- Equalization
 - 3-tap FFE least squares fit
 - Up to 5-tap DFE
- Crosstalk
 - NEXT assumed worse case than FEXT
 - 2 Aggressors, randomly phased
 - Choose Worst (Highest SDD21 Magnitude) for Molex, Intel
 - Match Case by Case For Tyco Channels
- Clock Recovery

Included in Model

- Wideband Noise
 - Added at Receiver
 - Value = 1.46 mV RMS (per IEEE)
- Quantization
 - FFE
 - Duobinary Uses 8 Levels, Range Based on All Channels
 - NRZ Uses 8 Levels, Range Based on All Channels
 - Range for Duobinary is different from range for NRZ
 - DFE
 - 16 Levels Based on Post-Cursor Range For Current Channel
- Jitter
 - DJ of 0.4 UI-pp Added (intent was to compensate for inability to sim RJ)
 - Phase Modulation at 1.1 GHz

Limitations

- Only 1000 Bits
 - RJ not included
 - Worst case events may not appear
 - Wideband noise
 - Crosstalk
- Iterative Adjustment of FFE and Sample Point Would make results
 more optimistic & typical in actual implementation
- Quantization effects may be larger in actual implementation
- Belief:
 - We feel this evaluation is realistic, balanced and valuable, when viewed in total, given the limitations, assumptions and impairments.

Math Progression

- Chapter 1 -- Determine Impulse Response of Through Channel.
- Chapter 2 -- Read in Bit Stream, Do Clock Recovery
- Chapter 3 -- Find FFE.
- Chapter 4 -- Find Tx Signal and FFE DC Gain.
- Chapter 5 -- Show FFE-Equalized Bit Streams, Eyes, by Assembling Equalized Impulses.
- Chapter 6 -- Find Quantized Tx FFE Tap Values.
- Chapter 7 -- Repeat (Chap 5) For Comparison.
- Chapter 8 -- Calculate DFE Taps.
- Chapter 9 -- Add DFE to Result of Chap 7, No Jitter.
- Chapter 10 -- Add DFE to Result of Chap 7, With Jitter.
- Chapter 11 -- Generate the Crosstalk.
- Chapter 12 -- Add Wideband Noise.
- Chapter 13 -- Generate the DFE Quantization.
- Chapter 14 -- Repeat Chap 7 With Xtalk, DFE Quantization, Jitter, and Noise.

NOTE: This is not a StatEye simulator

Comparison Approach

- Receiver performance is viewed from a *similar complexity* basis...assuming:
 - 5-tap NRZ DFE is a reasonable complexity bound
 - 3-tap DB DFE and 5-tap NRZ DFE are reasonably similar in complexity

Duobinary 3FFE / 3DFE

Case1FM13SI20TD13SIL10.s4p
 Case2FM13SI20TD13L10.s4p
 Case3FM13SI20TD6L10.s4p

× Case4FM13Sl20TD13L6.s4p

* Case5DS1310TD13L6.s4p

• Case6DS1310TD13L6.s4p

+ Case7FM13SI1TD13SIL6.s4p

- FR408_25in_sj3k3g3h3_SPARS_BD.s4p

- FR408_25in_sj3k3g3h3_SPARS.s4p

1m_INBOUND/sj3k3g3h3_SPARS.s4p

peters_01_0904_B1_thru.s4p

peters_01_0904_B20_thru.s4p

× peters_01_0904_B32_thru.s4p

x peters_01_0904_M1_thru.s4p

peters_01_0904_M20_thru.s4p

+ peters_01_0904_M32_thru.s4p

- peters_01_0904_T1_thru.s4p

- peters_01_0904_T20_thru.s4p

peters_01_0904_T32_thru.s4p

T1_Synth_Causal

peters_01_0904_B12_thru.s4p

× peters_01_0904_M12_thru.s4p

x peters_01_0904_T12_thru.s4p

XILINX

• 0

+ 0

SPEC BOUNDS

NRZ 3FFE / 5DFE

 Case1FM13SI20TD13SIL10.s4p Case2FM13SI20TD13L10.s4p Case3FM13SI20TD6L10.s4p × Case4FM13Sl20TD13L6.s4p * Case5DS1310TD13L6.s4p Case6DS1310TD13L6.s4p + Case7FM13SI1TD13SIL6.s4p - FR408 25in sj3k3g3h3 SPARS BD.s4p - FR408 25in sj3k3g3h3 SPARS.s4p 1m INBOUND/sj3k3g3h3 SPARS.s4p peters 01 0904 B1 thru.s4p peters 01 0904 B20 thru.s4p × peters_01_0904_B32_thru.s4p x peters 01 0904 M1 thru.s4p peters 01 0904 M20 thru.s4p + peters 01 0904 M32 thru.s4p - peters 01 0904 T1 thru.s4p - peters_01_0904_T20_thru.s4p • peters_01_0904_T32_thru.s4p T1 Synth Causal ▲ peters 01 0904 B12 thru.s4p × peters 01 0904 M12 thru.s4p x peters_01_0904_T12_thru.s4p • 0 +0

S. XILI

- SPEC BOUNDS

Case1FM13SI20TD13SIL10.s4p

General Eye Shapes vs. Trajectory

• Diagram of d-horiz / d-vert for an eye

DB3 to NRZ5 Trajectories

DB3 to NRZ5 Trajectory Deltas

Case2FM13SI20TD13L10.s4p Case3FM13SI20TD6L10.s4p Case4FM13SI20TD13L6.s4p Case6DS1310TD13L6.s4p - FR408 25in sj3k3g3h3 SPARS BD.s4p FR408 25in sj3k3g3h3 SPARS.s4p 1m INBOUND/sj3k3g3h3 SPARS.s4p peters 01 0904 B1 thru.s4p peters 01 0904 B20 thru.s4p peters 01 0904 B32 thru.s4p ----- peters 01 0904 M20 thru.s4p peters 01 0904 M32 thru.s4p ---- peters 01 0904 T1 thru.s4p peters_01_0904_T20_thru.s4p — peters_01_0904_T32_thru.s4p ____ peters 01 0904 B12 thru.s4p **——0** -+-00

XILIN

NRZ5 Degradation due to Jitter, Xtalk

Conclusions

- Long stubs are an obstacle
- NRZ serves more channels than Duobinary
 - The unsolved channels are important market applications
 - Some channel improvements are possible that are compatible with High Volume Manufacturing techniques
 - Further improvements should be considered for both signaling and channel in order to solve these important channels
- IEEE 802.3ap should be moved forward based on this and other data

Appendix Slides

Channel List

Case1FM13SI20TD13SIL10.s4p
Case2FM13SI20TD13L10.s4p
Case3FM13SI20TD6L10.s4p
Case4FM13SI20TD13L6.s4p
Case5DS1310TD13L6.s4p
Case6DS1310TD13L6.s4p
Case7FM13SI1TD13SIL6.s4p
FR408_25in_sj3k3g3h3_SPARS_BD.s4p
FR408_25in_sj3k3g3h3_SPARS.s4p
1m_INBOUND/sj3k3g3h3_SPARS.s4p
peters_01_0904_B1_thru.s4p
peters_01_0904_B20_thru.s4p
peters_01_0904_B32_thru.s4p
peters_01_0904_M1_thru.s4p
peters_01_0904_M20_thru.s4p
peters_01_0904_M32_thru.s4p
peters_01_0904_T1_thru.s4p
peters_01_0904_T20_thru.s4p
peters_01_0904_T32_thru.s4p
T1_Synth_Causal
peters_01_0904_B12_thru.s4p
peters_01_0904_M12_thru.s4p
peters 01 0904 T12 thru.s4p

