NRZ Simulation over Ad Hoc pre-selected Channels

March 2005 802.3ap plenary meeting

By: Amir Bar-Niv / Mysticom Gaby Gur Cohen / Mysticom Supporter: Joe Abler / IBM

Outline

- Objectives and motivation
- Simulations Environment
- Tyco cases 1-7 simulation results
- PETER's channels simulation results
- Analysis
- Summery

Objectives and Motivation

- Simulate NRZ signal on Ad-Hoc pre-selected channels
- Use small size (taps) equalizer: 3 FFE, 5 DFE.
- Use Signed-LMS for adaptation.
- Define the list of channels that NRZ, with minimum hardware, can solve.
- <u>Motivation</u>: demonstrate that NRZ signaling with optimized (small number of taps) equalizer can resolve most channels.
- <u>Motivation</u>: define equalizer architecture that is simple to implement in low cost CMOS technology.
- <u>Motivation</u>: suggest channels that can be solved with NRZ signaling, to prevent over design.

Method

- Simulation environment for NRZ signaling, including impairments: Jitter, NEXT, FEXT, package, AC coupling, white noise.
- Simulate over the Tyco cases 1-7.
- Simulations of PETER's channels.
- Analyze results.

Computing BER

BER calculation under the assumption of worst case Gaussian noise.

$$BER_NRZ = Q\left(\frac{d_{\min}}{2\sigma_n}\right)$$

 <u>dmin</u>= Minimum distance between "symbols" at point were decision is made.

- SNR = $\frac{d\min}{\sigma_n}$
- σ_n^2 = noise variance at slicer input.
- BER=10e-12 requires SNR = ~23dB
- BER=10e-15 requires SNR = ~24dB
- BER=10e-18 requires SNR = ~25dB

Simulation Tool

- Internal tool that was developed in Mysticom, called X-system.
- Tool is based on C++, with Simulink as its GUI.
- Simulations are in the time domain. S-param models are translated into Impulse response and implemented as a filter in the time domain.
- Tools was validated on previous silicons and products (1000Base-T, XAUI, CX4,...) - showed very good correlation between lab measurements and simulation results.

Simulation Environment Block Diagram

Simulation Parameters

- Launch amplitude: 1 Vp-p differential
- Transmitter DJ set to maximum: 0.17 Ulpp
- Transmitter RJ set to maximum: 0.0071 Ulrms (0.1Ulpp @ 10-12 bits)
- Data rate: 10.3 Gbps
- Receiver offset: 0 ppm
- Data pattern: PRBS15
- Random noise: 1.46mV rms
- AC coupling: 4.7nf
- Simulate across package types : Spec_RL_cap_like
- Simulating continues time by using simulation clock which is 16 times faster than the bit rate (160GHz).

Equalizer Parameters

FFE :

- 3 Taps length.
- I pre-cursor, main-tap, 1 post-cursor.
- Analog tap delay line of T/2 space.
- Signed-LMS adaptation.
- DFE:
 - 5 Taps length.
 - Non overlapped with FFE.
 - T-space CML.
 - Signed-LMS adaptation

mysticem

- SNR =24.86dB
- Horizontal margin = 21.8psec
- Vertical margin =96mV

- SNR=25.74dB
- Horizontal margin =28psec
- Vertical Margin=40.7mV mysticem

mysticem

SNR=23.15dB

- Horizontal margin =5psec
- Vertical Margin=8.6mV

SNR=25.55dB

- Horizontal margin =25psec Vertical_margin=47.6mV

- SNR=25.14dB
- Horizontal margin =29psec
- Vertical_margin=68.8mV

NRZ Simulation March '05 8023.ap Meeting

mysticem

- SNR=23.71dB
- Horizontal margin =6psec
- Vertical_margin=19.6mV

mysticem

mysticem

SNR=25.44dB

- Horizontal margin =50psec
- Vertical_margin=112.5mV

NRZ Results over TYCO channels

SIGNALING	FILF	SNR[dB]	V MRG[mV]	H MRG[psec]
NRZ	Case #1	24.86	96	21.8
NRZ	Case #2	25.74	40.7	28
· · · · · ·				
NRZ	Case #3	23.15	8.6	6
NRZ	Case #4	25.55	47.7	25
NRZ	Case #5	25.14	68.8	29
NRZ	Case #6	23.71	19.6	6
NRZ	Case #7	25.44	112.5	50

NRZ Over PETER's Channels

SIGNALING	FILE	SNR[dB]	V_MRG[mV]	H_MRG[psec]
NRZ	B1	23.21	4.2	13
NRZ	B12	24.69	31.8	46.87
NRZ	B20	24.29	24.3	25
NRZ	B32	23.17	2.4	3.13
NRZ	M1	22.6	0	0
NRZ	M20	24.78	27.4	37.5
NRZ	M32	22.21	0	0
NRZ	T1	19.21	0	0
NRZ	T12	13.97	0	0
NRZ	T20	15.57	0	0
NRZ	T32	17.24	0	0

Results analysis

TYCO channels

- All channels can be resolved for BER of better than 10e-12.
- Cases #3 and #6 have lower margin.

PETER's channels

- B channels:
 - Can be resolved for BER of 10e-12
 - Channel B32 has lower margin
- M channels:
 - M20 can be resolved for BER of better than 10e-12
 - M1,M12,M32 hard to meet BER target
- T channels
 - Far from target ,BER is less than 10E-7
- Complete results are provided in spreadsheet

Summary

Signaling

 NRZ with Analog FFE(3 taps), and DFE(5 taps), with Sign-LMS adaptation can resolve most channels.

Channel model

- Tyco channels can be solved.
- Portion of Peter's channel can be solved with the current architecture.

Backup

- SNR=23.21dB
- Horizontal margin =13psec
- Vertical_margin=4.2mV

mysticem

- SNR=24.69dB
- Horizontal margin =46.87psec
- Vertical_margin=31.8mV

mysticem

- SNR=24.29dB
- Horizontal margin =25psec
- Vertical_margin=24.3mV

- SNR=23.17dB
- Horizontal margin =3.13pse mysticem

M20

- SNR=24.78dB
- Horizontal margin =37.5psec

Impulse Response and cursors position

27