

Channel Model Ad Hoc Report

IEEE P802.3ap Task Force Meeting Atlanta, GA March 15, 2005

Adam Healey, Agere Systems

From January...

- Move that normative channel specification be defined in the time domain (applies to analysis and not necessarily measurement).
 PASSED (23/2/9)
- Direct the channel model ad hoc to include reference transmitter, receiver, terminations (package and IC), and TP4-TP5 segment in the normative channel specification.
 PASSED (25/1/10)

Meetings

- Teleconference: Thursday, February 10
 - Methodology to derive time-domain data.
- Teleconference: Wednesday, February 23
 - Identify time-domain parameters.
- <u>Teleconference:</u> Wednesday, March 2
 - Crosstalk.

Presentations

 Popescu, "Proposal to IEEE P802.3ap Channel Model Ad Hoc".

http://ieee802.org/3/ap/public/channel_adhoc/popescu_c1_0205.pdf

 D'Ambrosia, "Revisiting Channel Model Measurements".

http://ieee802.org/3/ap/public/channel_adhoc/dambrosia_c1_0205.pdf

Moore, "Computing the effect of crosstalk using convolution".

http://ieee802.org/3/ap/public/channel_adhoc/moore_c1_0305.pdf

Brunn, "Proposal for S-parameter extraction to DC".
http://ieee802.org/3/ap/public/channel_adhoc/brunn_c1_0305.pdf

Derivation of Time-Domain Data

Options

- Option #1 is to supply recommended practices on how to derive time-domain data.
- Option #2 is to leave such details out of the standard.
 - The user is free to choose their favorite tool set to acquire the backplane impulse/pulse response.
- Straw poll in favor option #1 (10:6).
 - "If it matters, then we should define it."

Extrapolation

- Conversion of SDD21 vector to time domain requires extrapolation to DC.
 - May not be necessary if source data is from time-domain.
 - Proposal is to linearly extrapolate magnitude and unwrapped phase (best-fit line derived from first 10 measured points).
- Maximum measurement frequency of 15 GHz results in approximately 3 samples/baud at 10.3125 Gbaud.
 - To increase the sample rate, extrapolation to the desired Nyquist frequency is also required.
 - Zero-padding is the most convenient option (frequency content above 15 GHz probably does not have a strong influence in the time domain response).

Channel Specifications

TX / RX Return Loss Considerations

One approach may be the voltage transfer function referenced by Mellitz.

http://ieee802.org/3/ap/public/channel_adhoc/mellitz_c1_0904.pdf

$$\frac{V_o}{V_i} = \frac{\frac{S_{21}}{2}(1+\Gamma_R)(1-\Gamma_T)}{1-S_{11}\Gamma_T - S_{22}\Gamma_R - S_{21}S_{12}\Gamma_T\Gamma_R + S_{11}S_{22}\Gamma_T\Gamma_R}$$

- This could apply equally to the informative frequencydomain methodology.
- Question: What to use for Γ_{T} and Γ_{R} ?

"Thru" Specifications

- "Residual" ISI Penalty
 - The ISI Penalty following the application of an "ideal" fixedcomplexity equalizer.
 - Equalizer definition somewhat dependent on 10GBASE-KR signaling decision.
 - Link budget to include margin for "implementation loss".

Crosstalk

- Methodologies under consideration:
 - RMS sum of the peak values of the individual crosstalk aggressors.
 - Convolution of the amplitude distributions of individual aggressors. Amplitude distribution of the aggressors averaged over sample phase.
- Follow-up studies have been performed and results will be presented at this meeting.

Thank you!