Channel Model Ad Hoc Report

IEEE P802.3ap Task Force Meeting
Atlanta, GA
March 15, 2005

Adam Healey, Agere Systems

From January...

- Move that normative channel specification be defined in the time domain (applies to analysis and not necessarily measurement).
PASSED (23/2/9)
- Direct the channel model ad hoc to include reference transmitter, receiver, terminations (package and IC), and TP4-TP5 segment in the normative channel specification. PASSED (25/1/10)

Meetings

- Teleconference: Thursday, February 10
- Methodology to derive time-domain data.
- Teleconference: Wednesday, February 23
- Identify time-domain parameters.
- Teleconference: Wednesday, March 2
- Crosstalk.

Presentations

- Popescu, "Proposal to IEEE P802.3ap Channel Model Ad Hoc".
http://ieee802.org/3/ap/public/channel adhoc/popescu c1 0205.pdf
- D’Ambrosia, "Revisiting Channel Model Measurements".
http://ieee802.org/3/ap/public/channel adhoc/dambrosia c1 0205.pdf
- Moore, "Computing the effect of crosstalk using convolution".
http://ieee802.org/3/ap/public/channel adhoc/moore c1 0305.pdf
- Brunn, "Proposal for S-parameter extraction to DC". http://ieee802.org/3/ap/public/channel adhoc/brunn c1 0305.pdf

Derivation of Time-Domain Data

Options

- Option \#1 is to supply recommended practices on how to derive time-domain data.
- Option \#2 is to leave such details out of the standard.
- The user is free to choose their favorite tool set to acquire the backplane impulse/pulse response.
- Straw poll in favor option \#1 (10:6).
- "If it matters, then we should define it."

Extrapolation

- Conversion of SDD21 vector to time domain requires extrapolation to DC.
- May not be necessary if source data is from time-domain.
- Proposal is to linearly extrapolate magnitude and unwrapped phase (best-fit line derived from first 10 measured points).
- Maximum measurement frequency of 15 GHz results in approximately 3 samples/baud at 10.3125 Gbaud.
- To increase the sample rate, extrapolation to the desired Nyquist frequency is also required.
- Zero-padding is the most convenient option (frequency content above 15 GHz probably does not have a strong influence in the time domain response).

Channel Specifications

Link Model

TX / RX Return Loss Considerations

- One approach may be the voltage transfer function referenced by Mellitz.
http://ieee802.org/3/ap/public/channel adhoc/mellitz c1 0904.pdf

$$
\frac{V_{o}}{V_{i}}=\frac{\frac{S_{21}}{2}\left(1+\Gamma_{R}\right)\left(1-\Gamma_{T}\right)}{1-S_{11} \Gamma_{T}-S_{22} \Gamma_{R}-S_{21} S_{12} \Gamma_{T} \Gamma_{R}+S_{11} S_{22} \Gamma_{T} \Gamma_{R}}
$$

- This could apply equally to the informative frequencydomain methodology.
- Question: What to use for Γ_{T} and Γ_{R} ?

"Thru" Specifications

- "Residual" ISI Penalty
- The ISI Penalty following the application of an "ideal" fixedcomplexity equalizer.
- Equalizer definition somewhat dependent on 10GBASE-KR signaling decision.
- Link budget to include margin for "implementation loss".

Crosstalk

- Methodologies under consideration:
- RMS sum of the peak values of the individual crosstalk aggressors.
- Convolution of the amplitude distributions of individual aggressors. Amplitude distribution of the aggressors averaged over sample phase.
- Follow-up studies have been performed and results will be presented at this meeting.

Thank you!

