Receiver Compliance Testing

How to Achieve Industry Interoperability

May '05 Presentation to Ethernet over Backplane working group Joe Abler Brian Seemann

Industry Interoperability

Interoperability: The Primary Objective of all Standards Efforts

– How are we in 802.3ap going to address this?

Transmitter Compliance:

- Transmitter definition in the works:
 - Electrical specs, jitter specs, FFE configuration, Filter templates, etc.
- How to test for compliance?
 - May need some definition of test patterns and procedures, but this is relatively straight forward BAU and I expect we all see a basic path to get there!

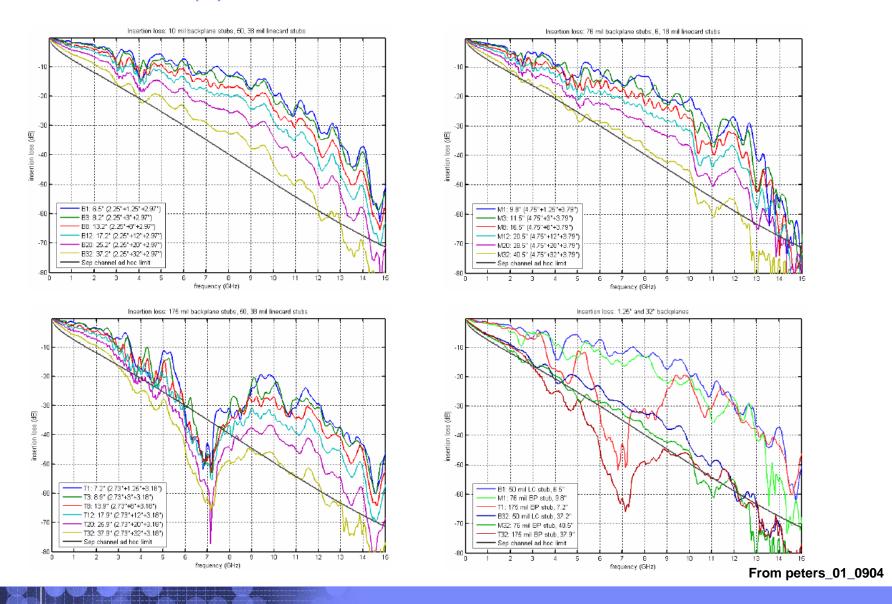
Receiver Compliance:

- A receiver shall operate with BER of better than E-12 when receiving a compliant transmit signal through a compliant backplane channel.
 - Sounds great.....but.....
 - What does that mean????
- How to test for compliance and provide confidence in industry interoperability?
 - Subject of this presentation

What's Needed to Test Receiver Compliance?

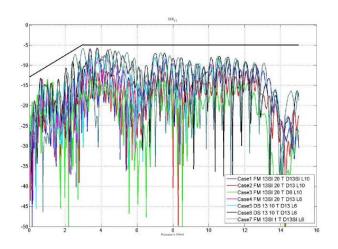
• Given the primary compliance directive:

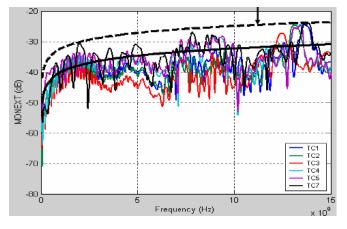
 A receiver shall operate with BER of better than E-12 when receiving a compliant transmit signal through a compliant backplane channel.

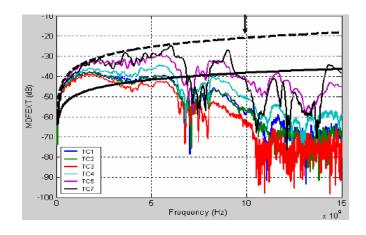

Two key items are needed for receiver testing

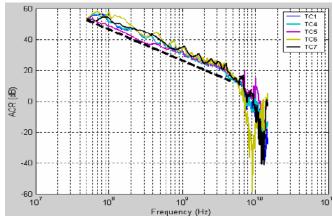
- A compliant transmitter or a piece of test equipment to emulate a compliant transmitter
- A compliant channel

Let's start with the compliant channel


- Will the standard define the channel that vendor's must test with?
 - Note that this is the first step to defining a receiver compliance point
- Will the standard leave it up to each individual vendor to select a test channel?
 - Let's first consider the implications of this....


Which Channel(s) Should be Tested?




Which Channel(s) Should be Tested?

- Assume for the moment a worst case SDD21 or set of SDD21's has been selected
 - Still need to consider Return Loss, NEXT, FEXT, ACR, Group Delay...

From: dambrosia_02_0904 dambrosia_03_0904

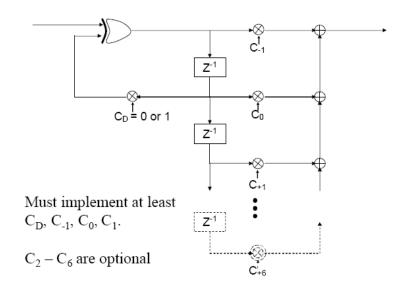
Which Channels Should be Tested?

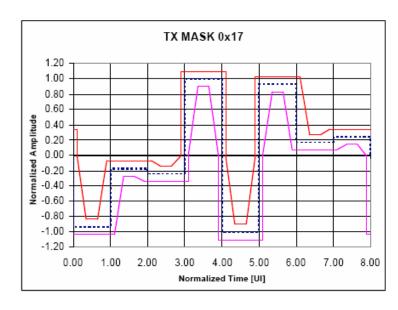
How does one build a worst case card?

- Trying to build a test card which drives all parameters to their worst case, without going over to any significant extent, is extremely difficult in itself
- Even when done, worst casing all individual parameters is not necessarily a worst case system
 - e.g. Worst case attenuation will limit reflection impact of worst case return loss
 - Similar situation with crosstalk
 - How to select where crosstalk enters the channel?
 - Channel split between backplane and line card?

Who builds these cards?

- Each individual vendor selects their own worst case definition and builds their own worst case cards?
- What motivates a serdes vendor to diligently select and build a set of test cards with a comprehensive array of absolute worst case parameters?
 - Not to suggest any vendor would be underhanded and purposely cut corners to claim compliance
 - However, there won't be any significant level of confidence that testing across vendors will be comparable to any reasonable extent


What is a Compliant Transmitter?


- We have basic electrical specs this is certainly a start!
 - A comprehensive test procedure would need to worst case these
 - However, worst case is different for through vs. xtalk channels
 - Min launch voltage, wc jitter, slow tr/tf, etc for through channel
 - Max launch voltage, fast tr/tf for cross talk channels

Parameter	Value	units
Baud rate tolerance	10.3125GBd +/- 100ppm	GBd
Diff. Amplitude ⁽¹⁾ maximum minimum	1200 800	m∨p-p m∨p-p
Common-Mode Voltage	TBD	V
Diff. Output Return Loss minimum	Figure	dB
Output Template	Figure	V
Transition Time min Measured between 20% and 80%	24	ps
Output Jitter (2)		
Random	.15	Ulp-p
Deterministic	0.15	Ulp-p
Total	0.3	Ulp-p

What is a Compliant Transmitter?

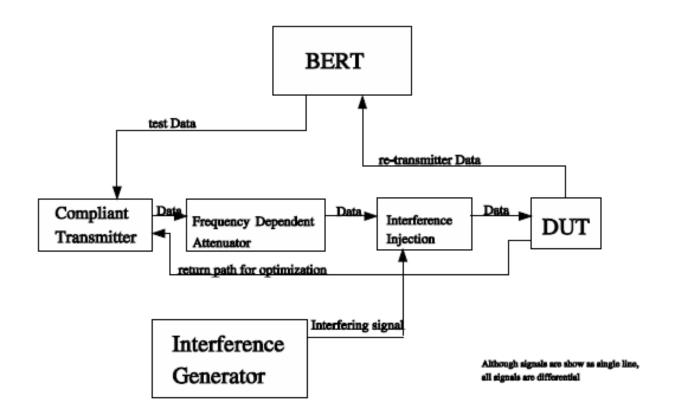
- More specifically, how is it configured for receiver testing?
 - We have a minimum defined equalizer architecture
 - We have transmit masks being defined
 - These are sample masks for Tx characterization of a few settings
 - We have an adaptive equalization protocol being defined
 - But convergence algorithms will be vendor unique

What is a Compliant Transmitter?

To build a comprehensive test, one must:

- Configure a transmitter or piece of test equipment for wc electrical specs relative to through channel
- Configure equalizer settings for the worst case expected deviation an adaptive algorithm may settle on
 - This is currently undefined, and left open to vendor interpretation
- Configure a transmitter(s) or piece(s) of test equipment for wc electrical specs relative to cross talk channel(s)

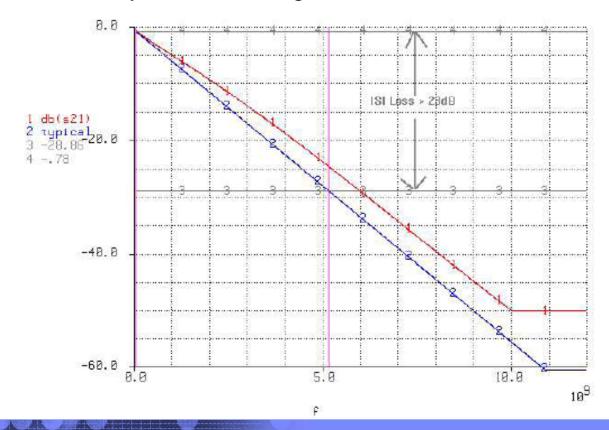
Where does one get this test apparatus?


- Test equipment with this configurability is not generally available
- Vendor transmitter hardware will not likely be at the extreme worst case

Let's Revisit the Compliance Directive:

- A receiver shall operate with BER of better than E-12 when receiving a compliant transmit signal through a compliant backplane channel.
- Three fundamental problems exist:
 - We don't have a compliant channel, we have an array of them
 - Considerably more complex than wireline standard definitions
 - We don't have a compliant transmit signal, we have an array of them
 - We don't have equipment or hardware to setup these tests, even if we knew how to define them
- How can we get confidence on interoperability and evaluation across vendors?
 - Vendor A can use a minimalist definition and claim compliance with a very sub-par receiver
 - Vendor B can use an extreme definition that doesn't allow the best performing receiver to pass compliance testing
 - And of course everything in-between

How to Address these Fundamental Issues?


Consider some key aspects of moore_01_0105!

Test setup for Interference Tolerance test

How to Address these Fundamental Issues?

- The Frequency Dependent Attenuator addresses 2 key aspects:
 - I know how to build it!
 - I have a high degree of confidence that all vendors will build substantially the same thing!

How to Address these Fundamental Issues?

Consider the definition of the transmit test setup:

- The BERT shown in Figure X.1 is optional, if the DUT and the Compliant
 Transmitter have suitable Built in Self Test (BIST) capability the transmitter can
 transmit a PRBS pattern and the DUT report Bit Error Rate (BER).
- The Compliant Transmitter can be any transmitter which is fully compliant with 10GBaseKR specifications, except that it shall have no more than 3 equalization taps or the equivalent.

This also address 2 key aspects:

- I know how to build it or where to get it!
- I have a high degree of confidence that testing across vendors will be highly comparable
 - Vendor motivation is to select best performing transmit device
 - The dependency on vendors independently interpreting a wc definition is removed
 - If desired, the variability that does remain could be tightened up by focusing on a defined BERT based test setup

Summary and Recommendation

Summary:

- The current direction of the 802.3ap standard will not contain a comprehensive receiver specification (whether normative or informative), nor will it contain a normative receiver test methodology.
- The complexity of the channel space and the transmit configuration space leaves this standard overly exposed to vendor interoperability failures.

Recommendation:

- Define a normative receiver test methodology to ensure a minimum capability across vendors
 - Use Interference Tolerance Test proposal (moore_01_0105) as a base
 - Consider inclusion of receiver jitter tolerance
 - Call for proposals on other test procedures that may be needed
 - e.g. DCD tolerance