dambrosia_02_0505 Informative Model Methodology Update

John D'Ambrosia Tyco Electronics

IEEE P802.3ap Backplane Ethernet Task Force Austin, Tx Interim, May 2005

tue

Discussion

- Informative Model Methodology (dambrosia_01_0105) approved
- Correlation with Signal Ad Hoc Results underway (melitz_01_0505)
- General comments

- This is done in relation to 10GBASE-KX
- It is desirable to run 1000BASE-KR and 1000BASE-KR4 over existing legacy systems
- Need model for 1000BASE-KR and 1000BASE-KR4 channels
- Use similar methodology from 10GBASE-KX efforts

Models / Data Comparisons

IEEE P802.3ap Backplane Ethernet Task Force Austin, Tx Interim, May 2005

tyco

10GBASE-KX4 Testing (taich_01_1104)

Test Results - HM-Zd XAUI Backplane (Nelco 4000-2)

10x30x10 configuration

11

Electronics

tucc

2x2x1 configuration

mysticem

November 2004 802.3ap Task force meeting

IEEE P802.3ap Backplane Ethernet Task Force Austin, Tx Interim, May 2005

Considerations

- XAUI Channel Model
 - Based on 20" FR-4
 - Has been used since release of specification
 - Body desires higher degree of interoperability at twice the reach
- CX4 Insertion Loss

- Not representative of a backplane environment. More severe loss than 1.25x the 1m target over low grade FR-4
- Would add complexity / power
- 10GBASE-KR Channel Model
 - Remember not the same frequency range for 1000BASE-KX and 10GBASE-KX4
 - Looks reasonable for 1m channels
 - Demonstrated performance by Mysticom on channels below this model

Recommendations

 Adopt worst case attenuation limit for 1000BASE-KX and 10GBASE-KX4

 $AttenuationLimit = -20 * \log 10(e) * [b1 * f^{(1/2)} + b2 * f + b3 * f^{2} - b4 * f^{3}]$

f = 50 MHz to 15 GHz b1 = 2.25e-5 b2 = 1.20e-10 b3 = 3.50e-20 b4 = 1.25e-30

TUC

Electronics

 Adopt methodology from 10GBASE-KR for both 1000BASE-KX and 10GBASE-KX4