

Making personal broadband a reality[™]

10GBASE-KR Transmit Equalizer Requirements

Adam Healey

Agere Systems

May 17, 2005

Scope and Purpose

- Investigate the impact of imperfect transmit equalization settings on link performance.
- Establish bounds on the range and accuracy of transmit equalizer settings.

Making personal broadband a reality[™]

Simulator Overview

Analytic Model

IEEE P802.3ap Task Force

Channel Model

IEEE P802.3ap Task Force

agere

Transmitter Model

- 1/T = 10.3125 GHz
- F(z) is the 3-tap transmit FIR
 - Settings for transmitter and aggressors are identical
- A = 400 mV
- H_t(f) yields a trapezoidal pulse with 24 ps rise time (20-80%)

$$f_0 = 1 - \left| f_{-1} \right| - \left| f_1 \right|$$

F(z) Signal Shaping

 $V_{pre} = A(-f_1 - f_0 + f_{-1})$ $V_{pst} = A(-f_1 + f_0 + f_{-1})$ $V_{ss} = A(f_1 + f_0 + f_{-1})$ $-f_1 + f_0 - f_{-1} = 1$

NOTE: By convention, f_1 and $f_{.1}$ are always negative and f_0 is always positive.

7 May 17, 2005 (r1.0)

IEEE P802.3ap Task Force

agere

Receiver Model

- H_r(f) is a 2-pole filter
 - $p_1 = 0.7/T, p_2 = 1.0/T$
- $n_0 = 133 \ \mu V_{rms}$
- NF = 24 dB
- G₀ = 1
- Δ_k is timing jitter
 - $PJ_t = 0.15 UI_{p-p}$
 - $RJ_t = 0.15 UI_{p-p}$ at 1E-12
 - $RJ_r = 0.15 UI_{p-p}$ at 1E-12
- C(z) is a feed-forward equalizer
 - not used
- D(z) is a 5-tap DFE
- t_s , C(z), and D(z) are chosen to minimize E[ϵ_k^2]

$$H_r(f) = \frac{p_1 p_2}{(s+p_1)(s+p_2)}$$
$$n_0 = 4kTR \int_{-\infty}^{\infty} |H_r(f)|^2 df$$

Making personal broadband a reality[™]

Simulation Results

Target SNR

- SNR must be better than 17 dB to achieve a BER < 1E-12.
- This relationship assumes that the noise term is Gaussian.
- This is an upper bound on the BER when the noise term is not truly Gaussian.
 - For example, residual ISI and crosstalk

SNR Correlation

SNR Correlation to Eye Height and Width

IEEE P802.3ap Task Force

Observations

- Analytic model predicts SNR quickly and accurately.
- Analytic model does not accurately predict eye height and width.
 - This is more a commentary on the correlation of SNR to height and width.
 - Comparisons were made using PRBS-11 pattern; a longer pattern would result in degradation of both eye height and width.
- Analytic model is pessimistic.
 - Requirements derived from this model should be more than sufficient for target applications.

Sensitivity Requirement Estimate

- Q_i is the SNR at the slicer input
- A_s is the slicer sensitivity
- Q₀ is the target SNR (based on BER objective)

• If
$$Q_i \leq Q_0$$
, then $A_s = 0$.

SNR Results Summary

Tap Weight Range

Tap Weight Resolution (SNR Penalty)

Tap Weight Resolution (Sensitivity)

Transmit Equalizer Impact on DFE

Making personal broadband a reality[™]

Conclusions

Observations

- Required pre-cursor range is roughly half of the required post-cursor range.
- Crosstalk environment is a factor in determining the best transmit equalizer configuration.
 - In addition, more precise equalization is required to provide more "headroom" in higher crosstalk environments.
- Link performance decreases with decreasing transmit equalizer resolution.
- Demands on the DFE receiver increase with decreasing transmit equalizer resolution.

Recommendations

- Define no fewer than 16 post-cursor settings in the range of –0.375 to 0
 - Post-cursor step size is 0.025
- Define no fewer than 8 pre-cursor settings in the range of -0.175 to 0
 - Pre-cursor step size is 0.025
- Define the pre- and post-cursor tolerance to be +/- 0.0125
- This would correspond to 128 possible transmit equalizer "states"

Future Work

- Investigate "sensitive" test cases with a detailed voltage and timing margin analysis.
- Are positive post-cursor tap weights required?
 - Such scenarios are conceivable with reflections.