

Overview

- Salz SNR based analysis
- Simulation results with DCD and rise time variation
- Effect of cresting factor of crosstalk

ICR plot

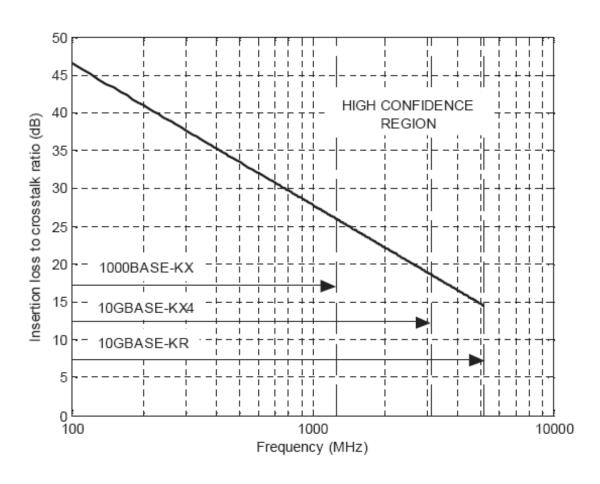


Figure 69B-1—Insertion loss to crosstalk ratio limit

Salz SNR analysis

Salz SNR –

- SNR of optimal FFE/DFE linear receiver in PAM system in the presence of only additive gaussian noise
- Mean(20*log10(1+folded_SNR)) over the frequencies within Fs/2
 - Folded SNR obtained by aliasing the linear SNR
- Published in IEEE journal paper & used in multiple standards for feasibility analysis
- ICRmin = SNR versus frequency for similar thru and aggressor PHYs
- Salz SNR = 23.5dB
- Salz SNR with increased crosstalk amplitude = 20.0dB
- Salz SNR with same amplitude and ~2.5dB equalization difference = 22.0dB
- Split rise time effect TBD
- No margin left for implementation
- 9.6mV RMS with Charles' XTLK PSD is not feasible
- 6.4mV RMS may have margin, but DJ, DCD, RJ, finite DFE, finite FFE or equivalent needs budget....
- DSL standards required 6dB Salz margin in theoretical analysis

Broadband noise results

- Noise spectrum is flat to 10G
- DCD = 0, noise RMS = 4.6mV RMS
- DCD = 0.035UIpp, noise RMS = 4.2mV RMS

Cresting factor

- Cresting factor of crosstalk is less than that of gaussian noise
- Reduce RMS gaussian noise to compensate
- Expect a factor of about ~ 1.25

Conclusion

- Use 4.2mV RMS for EIT test
 - Include factor of 1.25 for equalization difference between Thru and XTLK
 - Include factor of 1.25 for cresting factor of crosstalk relative to gaussian

