

Channel Design Parameter Impact on the SDD21 and Pulse Response

The purpose is to characterize effects of real design parameters on channel performance

Richard Mellitz Enterprise Platforms Group Intel[®] Corporation

Contributors/Reviewers:		
Matt Hendrick	Mike Altmann	Aniruddha Kundu
Olufemi Oluwafemi	Fulvio Spagna	Gopal Hegde

Richard Mellitz

Pravin Patel, IBM John D'Amborsia, Tyco Electronics

Message

- Board material and channel length are only "part" of a design
- Via stubs and connectors have a significant impact
 - Via stubs cause issues for equalization even if we are above a loss curve.
- Impedance mismatches have a much smaller effect.
- Legacy design practices can achieve 10Gb performance if the entire physical design is managed
 - However there will be challenges for silicon too!

3

Goal:

Determine relation between performance channel design parameters such as

- differential via structures
- impedance mismatches
- These features are expected to alter the following (and thus performance)
 - Frequency domain properties
 - Pulse response properties
- Not considered here: ... YET
 - Connectors
 - AC coupling cap structure
 - Power/Reference plane anomalies
 - Crosstalk

Goal: Show trends and magnitude of design choices

Paint an impressionistic picture: not pixels

Richard Mellitz

Process

- Create structure that resonate
- 1. For impedance
 - Adjusting impedance and lengths
 - This creates SDD21 ripple
 - For vias

2

- Adjusting stub length and pad stack
 - This creates SDD21 notches
- For these pathological cases
- correlate design features, frequency domain characteristics, and pulse response.
- Perform analysis independently
- Caveat: These effects will interrelate
- Not covered here
 - Job of the board designer is to manage

Evaluation and Design Practices

Without getting into signaling issues, we can access the relative signaling challenges with pulse response using partial pulse convolution.

- Pulse convolution is a worst case analysis and its expected that equalization will compensate for at least part of this. (see next slide)
- Three pulse characteristics can also be examined
 - Pulse height (Reference is 1V)
 - Near end ringing (1 UI to 2UI)
 - Settling
- For Common Place Design Practices
 - Determine what choices can be made to mitigate negative pulse response effects.

Partial Lone Pulse Response Convolution

Just a simple method to compare one channel against another

Encompasses long ringing and losses

 $s_1(t) = y(t) - \sum |y(t - kT)|$

 $k = -\infty$ $k \neq 0$

Compare max s(t) between channels for a simple metric

Richard Mellitz

Via resonance 2.5GHz to 7.5GHz Board thickness 0.150" to 0.300" **Z0: 90 to 110** Ω

Generic Connector Example

Getting a feel for mismatch performance

Here are simplifying assumptions to get an idea of what's going on

- First, consider system with no AC losses and no vias
- Lengths are all the same for all board segments
- Connectors are 0.3885"
- Length chosen with formula, lambda*factor, to see if specific resonance has an impact
- Length range between 9 and 37 inches

Example Mismatch Response - lossless

About 3dB ripple that's has a HF component at 750 MHz period

Richard Mellitz

Example of sub responses in range

Adding mismatch to the selection of lossy lines

Long vs short line: SDD21 w/wo mismatch

19 inch channel w/wo mismatches

15

Ripple/Mismatch Convolution Results

 Longer lines have less <u>eye opening impact</u> due to impedance induced ripple
 This ripple is cause by +/- 15% ZO line card tolerance

Richard Mellitz

Mismatch Conclusions

- Eye closure is between 0.3 dB and 0.6 dB from board tolerance.
- Packages have much more return loss in the pass band and may present big problems not yet considered.
- At least some of this can be fixed with equalization.
 - Mismatch is not a real big issue as long as the system is not at the brink of failure
- Board mismatch effects do not justify pass band ripple requirement.
 - More on this later when we talk about vias
- Connectors with excessive mismatch potentially could justify a pass band ripple requirement.

17

Via Effects

- Via stubs cause frequency notches
- Review structures
- Compare via parameters and frequency domain characteristics.
 - Use mixture of measurements, behavioral models, and full wave EM solutions.

Example of Via Tuning Parameters

int_{el}.

Richard Mellitz

Richard Mellitz

Notch Depth

I to 3 db can be adjusted with pad stacks 25 Legend

13 in line with via notch at 5 GHz

Profile of eye loss vs. length and FO

Vias notches at high frequency have little effect

Via Stub Conclusions

- Eye closure due to a via is between 1 and 10 dB
- Via notch depth:
 - Between 4 and 12 dB
 - Longer vias have deeper notches
 - Pad construction can reduce notch depth a maximum of 3 dB
- Effects due to a particular line wavelength resonance are not noticeable.
 - Only total segment length is important.
- At least some of this can be fixed with equalization.
- Via stubs may be manageable
 - Not real big issue as long as the system is not at the brink of failure
 - The log of stub length controls notch frequency (FO)
- Vias can cause pulse response to ring 40 to 60 UI out
- Via stub effects do justify pass band ripple requirement.
- Sharp notches above Nyquist rate have little effect
- It is possible that connectors could have a similar impact as vias do, so connector selection is very important.

Legacy Design Can Be Controlled to Limit

- Pass band ripple seems to be the simplest parameter to observe that directly impacts performance
- Large notches are caused by vias
 - Notches can be adjusted to mitigate effect
 - But only a little bit
- Legacy designs practices that have notches above Nyqusit do not effect pulse response.
 The above is the basis for some slight modifications to the SDD21 spec
 There are challenges for silicon... next

backup

intel

9 inches of channel w/wo mismatches

19 inch channel w/wo mismatches

29

33 inch channel w/wo mismatches

27 in line with via notch at 2.5 GHz

27 in line with via notch at 3.75 GHz

27 in line with via notch at 5 GHz

13 in line with via notch at 2.5 GHz

13 in line with via notch at 3.75 GHz

13 in line with via notch at 5 GHz

36