

Comparison of NRZ and Duobinary Receivers with and without Precoding

Apoorv Srivastava, Majid Barazande-Pour, John Khoury (Vitesse) Jeffrey Sinsky (Lucent) Nov 15, 1994 IEEE 802.3ap Backplane Ethernet Task Force Interim Meeting San Antonio, TX

YOUR PARTNER FOR SUCCESS

Supporters

- Mike Altmann
- Fulvio Spagna
- Andrew Adamiecki
- Mary Mandich
- Brian Seemann

Intel Corporation Intel Corporation

Lucent Technologies

Lucent Technologies

Xilinx

- Goal: Derive a common transmitter for use with either an NRZ or a duobinary receiver.
- Implementation complexity and error propagation discussed for following 4 cases:

Duobinary receiver without	Duobinary receiver <i>with</i> Tx
Tx precoding	precoding
NRZ receiver	NRZ receiver
without Tx	with Tx
precoding	precoding

Transmitter with Precoder

Transmitter with precoder

- Precoder in Tx simplifies duobinary decoding in Rx and avoids error propagation
- Precoder can also be implemented in parallel at lower speeds

VITESSE

Duobinary Decoder without Tx Precoding

- Decoder complexity
 - Feedback in critical path
 - Can be implemented in parallel with lower speed logic -> requires an additional mux
 - 2 levels of logic + feedback path < 1 Tclk
- Unbounded error propagation due to feedback in decoder
 - Error burst determined by # of consecutive '0's at C_n ; e.g. 1 error propagates 4 errors

Original Stream	-1 1 1 -1 1 -1 1 1 1 -1 -1 -1 -1
C _n	-2 0 2 0 0 0 0 2 2 0 -2 -2
C _n + error	-2 0 2 2 0 0 0 2 2 0 -2 -2
Decoded Stream	-1 1 1 1 -1 1 -1 1 1 -1 -1 -1

VITESSE

Duobinary Receiver with Tx Pre-Coder

Duobinary Rx with Tx Precoding

• No error propagation

Original Stream	-1 1 1 -1 1 -1 1 1 1 -1 -1 -1
C _n (with precoding)	-2 0 0 -2 0 +2 0 0 0 -2 -2 -2 -2
C _n + error	-2 0 0 -2 +2 +2 0 0 0 0 -2 -2
Decoded Stream	-1 1 1 –1 -1 –1 1 1 1 1 –1 –1

VITESSE

NRZ Receiver with precoding

NRZ receiver without Tx precoding

Classic NRZ receiver - no error propagation

NRZ Receiver with Tx precoding

VITESSE

NRZ receiver with Tx precoding

Requires a differential decoder to undo the Tx precoder

Bounded error propagation due to XOR and delay-element (limited to 2 bits)

Original Stream	-1 1 1 -1 1 -1 1 1 1 -1 -1 -1
C _n (with precoding)	-1 1 –1 –1 1 1 -1 1 –1 –1 –1 –1
C _n + error	-1 1 –1 11 1-1 1 –1 –1 –1 –1
Decoded Stream	-1 1 1 10-1 1 1 1-1-1-1

- Normative two-level transmitter must include a precoder
 - In the duobinary receiver
 - Eliminates unbounded error propagation
 - Decoder is a simple XOR gate
 - In the NRZ receiver
 - Trivial differential decoder required
 - Error propagation limited to 2 bits

Approach provides maximum flexibility in receiver design options while minimizing overall circuit complexity in Tx and Rx

