Update on FEC Proposal for 10GbE Backplane Ethernet

Andrey Belegolovy Andrey Ovchinnikov Ilango Ganga Fulvio Spagna Luke Chang

Contributors & Supporters

Contributors & Supporters

Andre Szczepanek - Texas Instruments

Supporters

- Harmeet Bhugra
- Magesh Valliappan
- Cathy Liu
- David Koenen

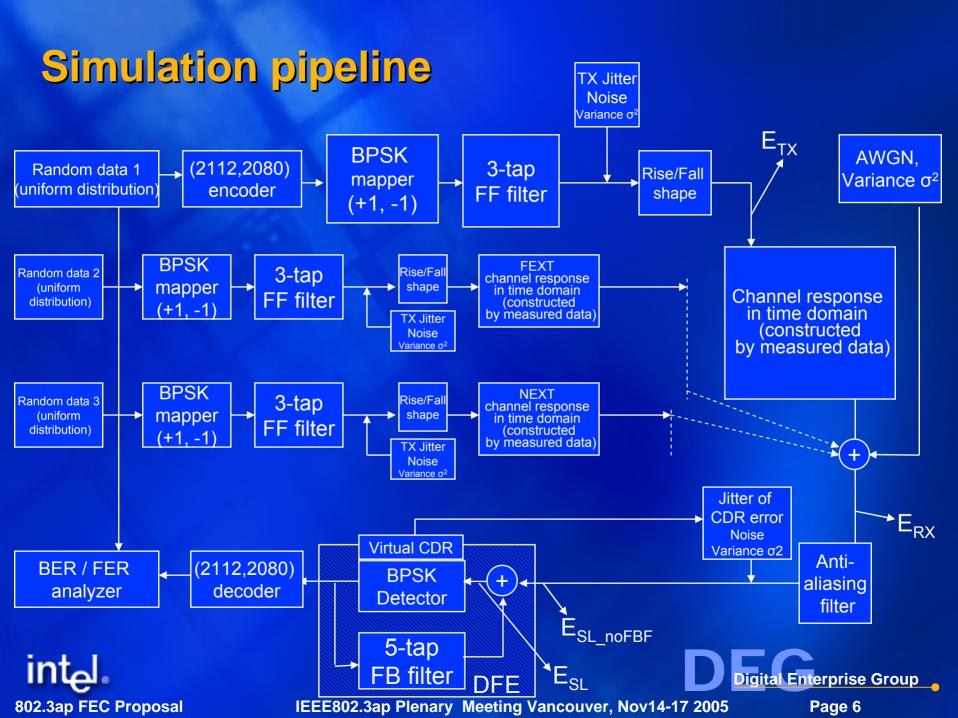
- IDT
- Broadcom
 - LSI Logic
 - HP

Key Messages

- FEC Proposal made to the 802.3ap TF Sep '05 Interim along with draft text (Reference: ganga_01_0905 & ganga_02_0905)
 - Task Force expressed interest in continuing the FEC work (vide Strawpoll
 - TF requested to perform simulations with additional impairments
 - TF members requested to make FEC optional
- This is an update on FEC to the task force

Recap on FEC Objectives

- FEC to provide additional margin and increase link budget
- BER objective of 10⁻¹² or better on broader set of channels (green/gray)
- Minimum changes to existing sublayers
 - Locate between PCS & PMA and be compatible with existing PCS (clause 49) & PMA (clause 51)
- Negotiate FEC capability through Auto-Negotiation
- No increase in baud rate or decrease in payload rate
- Low overhead (latency/area/power)
- Leverage previous work presented to the task force (Reference: szczepanek_01_0305, szczepanek_05_0505)


IEEE802.3ap Plenary Meeting Vancouver, Nov14-17 2005

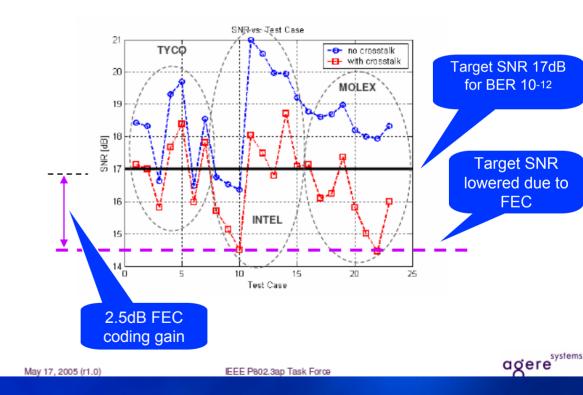
FEC Enhanced Simulation model overview

- Simulation to closely model real backplane systems, include additional impairments - As per feedback from 802.3ap Sep'05 interim/TF Members
- Parameters to consider
 - Include TX FIR filter
 - Include TX Jitter and rise/fall time shaper
 - Include Cross talk (NEXT, FEXT)
 - Include the effect of CDR
 - Plot BER curve with SNR at slicer
 - Include additional test channels from channel library: Intel, Tyco, Molex
 - Improved channel data from peters_m1_0605.zip, peters_01_0605.pdf
 - Include Channels from Tyco and Molex
- Error distribution with new simulation setup
 - P(m,n)-characteristics, burst error length

Simulation conditions

- Time Domain simulation
- Simulation model includes
 - 3 tap FIR filter: Optimal for the given channel
 - Rise/Fall time shaper: 24ps
 - Tx Jitter: 0.05UI(random, variance), 0.05UI(sine, amplitude)
 - Channels: Time domain response constructed from frequency domain parameters from 802.3ap channel model library
 - Cross talk: 1 NEXT and 1 FEXT aggressor (Intel, Molex, Tyco)
 - DFE: Optimal for the given channel
 - CDR effect: By equivalent noise with variance 0.01-0.04
 - AA filter: 2-pole filter p1 = 0.7/T, p2 = 1.0/T

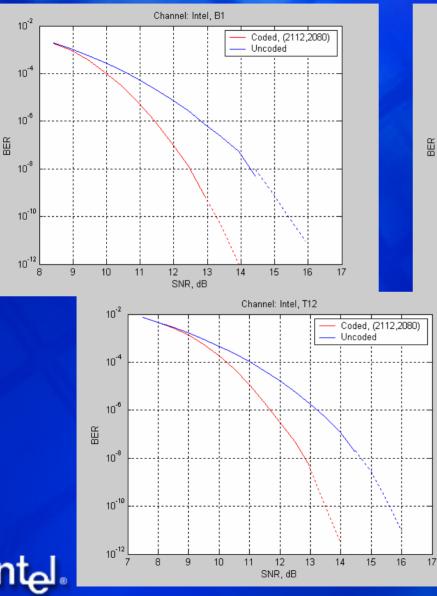
FEC Gain Vs SNR for test channels

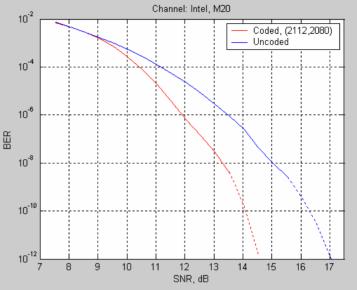

- Gain of 2.5dB allows channels listed in the graph to meet the target SNR of 17dB
- SNR difference between best and worst case channels is ~5dB
- In relative terms 2.5dB gain provides ~50% improvement for worst case channels
- Picked 7 channels below target SNR for FEC sims
 - Intel: T12, M20, B1

802.3ap FEC Proposal

- Tyco: Case3, Case6
- Molex: in J4K4G4H4 out J3K3G3H3

Reference: slide from healey_01_0505.pdf


SNR Results Summary

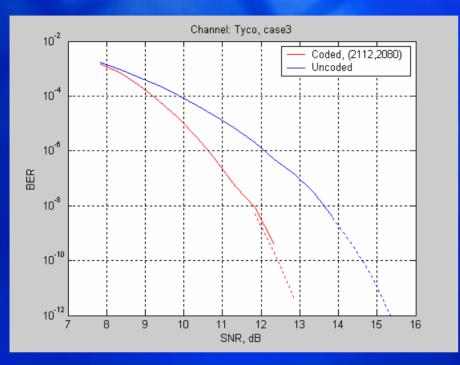


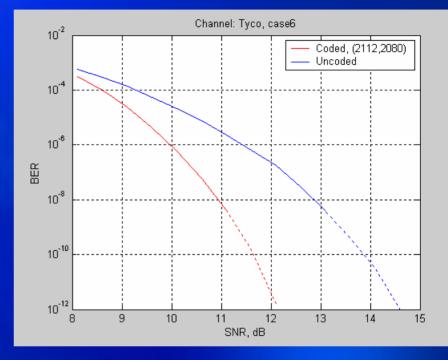
IEEE802.3ap Plenary Meeting Vancouver, Nov14-17 2005

Simulation results - Intel channels

Intel Test channels (Peters_01_0605) T12, M20, B1

SNR = SNR at slicer Simulations to BER of 10⁻⁸/10⁻⁹ and extrapolated to 10⁻¹²


Sims show ~2dB coding gain at BER 10⁻⁹

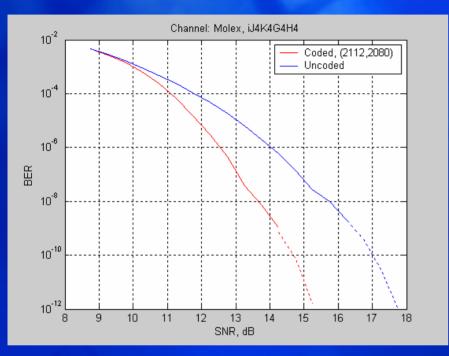


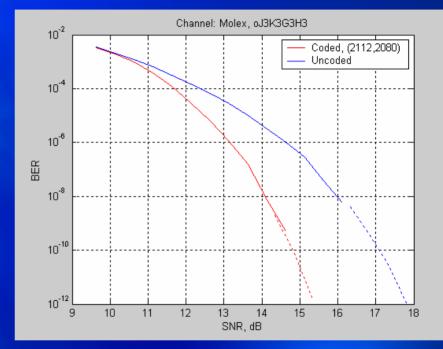
802.3ap FEC Proposal

IEEE802.3ap Plenary Meeting Vancouver, Nov14-17 2005

Simulation results - Tyco channels

Tyco Test channels Case 3, Case 6


Sims show ~2dB coding gain at BER 10⁻⁹

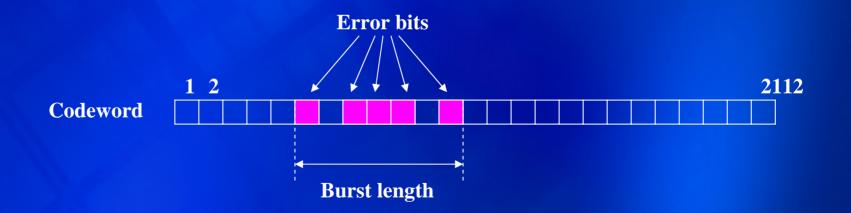

802.3ap FEC Proposal

SNR = SNR at slicer Simulations to BER of 10⁻⁸/10⁻⁹ and extrapolated to 10⁻¹²

Simulation results - Molex channels

Molex test channels Inbound J4K4G4H4 Outbound J3K3G3H3

SNR = SNR at slicer Simulations to BER of 10⁻⁸/10⁻⁹ and extrapolated to 10⁻¹²


Sims show ~2dB coding gain at BER 10⁻⁹

802.3ap FEC Proposal

IEEE802.3ap Plenary Meeting Vancouver, Nov14-17 2005

Error distribution

- P(m,n) characteristics (for 7 channels)
 - Normalized number of frames that have m errors
- Burst lengths (for 7 channels)
 - Error burst length is the distance between first and last error inside 1 codeword

IEEE802.3ap Plenary Meeting Vancouver, Nov14-17 2005

Page 12

Digital Enterprise Group

Error distribution, Intel channels

B1

m	Pr(m,2112)	m	Pr(burst of length m)
0	0,983481	1	0,930928022
1	0,015378	2	0,061020643
2	0,001123	3	0,000605364
3	1,7E-05	4	0
4	1E-06	5	0
5	0	6	0
6	0	7	0
7	0	8	6,05364E-05
8	0	9	6,05364E-05
9	0	10	0
10	0	11	0
11	0	>11	0,007324899

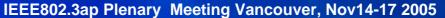
- Data in all tables:
- P(m,n)-characteristics for frames of length 2112
- Burst length distribution
 - Normalized probability of error burst event of given length for error frames
- 2*10⁹ bits simulated for each channel at SNR that gives coded BER about 10⁻⁸

IEEE802.3ap Plenary Meeting Vancouver, Nov14-17 2005

Error distribution, Intel channels (2)

M20

m	Pr(m,2112)	m	Pr(burst of length m)
0	0,996229	1	0,422699549
1	0,001594	2	0,538053567
2	0,002039	3	0,029965526
3	0,000108	4	0,007159905
4	2,6E-05	5	0,001325908
5	4E-06	6	0
6	0	7	0
7	0	8	0
8	0	9	0
9	0	10	0
10	0	11	0
11	0	>11	0,000795545


T12

_			
m	Pr(m,2112)	m	Pr(burst of length m)
0	0,993339	1	0,22789371
1	0,001518	2	0,710253716
2	0,004781	3	0,039333433
3	0,00028	4	0,013511485
4	7,5E-05	5	0,004954211
5	6E-06	6	0,00060051
6	1E-06	7	0,000150128
7	0	8	0
8	0	9	0
9	0	10	0,000150128
10	0	11	0
11	0	>11	0,00315268

int

802.3ap FEC Proposal

Error distribution, Tyco channels

Case6

m	Pr(m,2112)	m	Pr(burst of length m)
0	0,990547	1	0,474240982
1	0,004483	2	0,436898339
2	0,004148	3	0,062308262
3	0,000604	4	0,015867978
4	0,000163	5	0,004125674
5	4E-05	6	0,001586798
6	1,4E-05	7	0,000105787
7	1E-06	8	0
8	0	9	0
9	0	10	0,000105787
10	0	11	0
11	0	>11	0,004760394

\frown		- (
	20	$\mathbf{\Delta}$	≺
		て、)

m	Pr(m,2112)	m	Pr(burst of length m)
0	0,99088	1	0,646491228
1	0,005896	2	0,325
2	0,002988	3	0,021162281
3	0,000203	4	0,002850877
4	3,1E-05	5	0,000219298
5	2E-06	6	0
6	0	7	0
7	0	8	0
8	0	9	0
9	0	10	0,000109649
10	0	11	0
11	0	>11	0,004166667

Error distribution, Molex channels

Outbound J3K3G3H3

m	Pr(m,2112)	m	Pr(burst of length m)
0	0,985625	1	0,601321739
1	0,008644	2	0,367095652
2	0,005329	3	0,02066087
3	0,000328	4	0,003756522
4	6,7E-05	5	0,000347826
5	6E-06	6	0,00013913
6	1E-06	7	0
7	0	8	0
8	0	9	0
9	0	10	0,00013913
10	0	11	0
11	0	>11	0,00653913

Inbound J4K4G4H4

m	Pr(m,2112)	m	Pr(burst of length m)
0	0,991277	1	0,532385647
1	0,004644	2	0,428866216
2	0,003764	3	0,026940273
3	0,000242	4	0,006534449
4	6,7E-05	5	0,000573197
5	6E-06	6	0,000114639
6	0	7	0
7	0	8	0
8	0	9	0
9	0	10	0,000114639
10	0	11	0
11	0	>11	0,004470939

Error distribution analysis

- Errors are not independent
 - Probability of two errors in a frame is significantly larger than squared probability of single error
- Errors are grouped into error bursts
 - Larger part of the frame is free of errors
- Error bursts of length 10 to 11 were found
 - FEC code (2112,2080) should correct error burst of 11
- DFE error propagation is an important consideration for 802.3ap channels
- Burst error correcting FEC code (2112,2080) provides 2-2.5 dB coding gain

FEC code description

- The (2112, 2080) burst error correction code is a shortened cyclic code with 32 redundant bits
 - Guaranteed errors burst length that can be corrected is t = 11 bits
 - It is a systematic code well suited for correction of the burst errors, typical in a backplane channel (Clause 69.3) resulting from DFE error propagation
 - The (2112, 2080) code was constructed by shortening of cyclic code (42987, 42955)
- Generator polynomial
 - $g(x) = x^{32} + x^{23} + x^{21} + x^{11} + x^2 + 1$
- For (2112, 2080) code
 - encoder: systematic, represented by LFSR of length 32
 - decoder: Meggitt decoder for shortened cyclic codes
 - detector: syndrome calculation
- PN-2112 bit sequence

802.3ap FEC Proposal

- Generated by scrambler polynomial from Clause 49 $r(x) = x^{58} + x^{39} + 1$ with initial state of $x^{57}=1$ and $x^{i-1}=x^i(x \circ R)^1$ or binary 101010....
- For every codeword PN-2112 sequence is returned to its initial state
- Scrambling with PN-2112 sequence is necessary to maintain DC balance and to ensure FEC block sync (ensures any shift in code word is not equal to another)

IEEE802.3ap Plenary Meeting Vancouver, Nov14-17 2005

Conclusions

- The FEC code (2112, 2080) allows
 - to have ~2.0-2.5 dB TX energy gain
 - the BER to go from ~10⁻⁸ to 10⁻¹² or better with same SNR
- 802.3ap test channels have error burst length of up to 11 bits
 - (2112, 2080) with minimum t = 11 bits is optimum code for 802.3ap channels
- Low latency

802.3ap FEC Proposal

- Encoder latency is 32 bits
- Decoder latency is 2112+ bits (approx 200ns at 10G)
- FEC function can be disabled to bypass decoder latency
- FEC block synchronization
 - 2112 bit block shifts will find lost sync, continuous sync monitoring during normal operation mode (uses conventional n/m serial locking techniques)
 - Required only at link start or in case of loss of connection

Digital Enterprise Group 7 2005 Page 19

Summary / Proposal

- FEC allows to achieve BER objective of 10⁻¹² or better on broader set of channels
- FEC provides additional margin to address manufacturing variations, PVT/environmental variations, interoperability with multi-vendor devices

Proposal

- Include Forward Error Correction (FEC) to 10GBASE-KR PHY
 - FEC sublayer between PCS & PMA (compatible to clause 49 & 51)
 - FEC is optional to implement and optional to turn it on
- Use shortened cyclic code (2112,2080) for FEC
- Auto-negotiation to advertise FEC capabilities in PHY

