10G 4-Lanes Ethernet over Backplane proposal

September 2004 IEEE 802.3 Interim meeting

Dimitry Taich Dr. Ze'ev Roth

Mysticom Mysticom

List of supporters:

David Koenen Justin Gaither

Nitish Amin

HP Xilinx Vitesse

Partial list of 802.3ap presentation that were used

- "System Vendor Requirements for 10Gb/s Backplane" mandich_01_0704_pdf, July/04 Plenary meeting
- "Need for 4-Lane 10GEthernet Backplane Support" lynch_01_0504.pdf, May 2004 Interim meeting
- "What We Learned from XAUI and How to Apply it to Ethernet in the Backplane" - ghiasi_01_0104.pdf, January 2004 Interim meeting

Motivation

- 4 lanes copper support today:
 - XAUI supports up to 20" on the FR4
 - CX4 supports up to 15m Twinax cabling
 - <u>There is no standard</u> for transmitting & receiving 10G Ethernet over 20" to 1 meter of enhanced FR4
- "System vendors NEED an interoperable 4-Lane 10G standard for up to 1M of enhanced FR4" – May interim P802.3ap meeting, lynch_01_0504.pdf
- "Define a 4-lane 10Gb/s PHY for operation over the 802.3ap channel model" - IEEE P802.3ap Objectives, updated during July 802.3 Plenary meeting

Guideline

- No MAC changes
 - Preserve the 802.3ae frame format
 - Preserve min and max frame size of current 802.3 Std
 - Support Existing media independent interface (XGMII)
- No PCS changes to 802.3ae
- Adopt Clause 45 management registers
- Support autonegotiation including legacy devices that were not designed to support Autoneg
- Simplest and well-known signaling approach that can do the job
- Support operation over at least 40" with 2 connectors copper links with BER of 10⁻¹² or better

What we have learnt from XAUI deployment

- No more alternative far-end and near-end compliance points.
 - Single Transmitter compliance point should be selected. Nearend is clear favorite
- Eye opening criteria isn't the best way to ensure devices interoperability
 - Xmt template test seems to be preferable to ensure
- Lack of explicit Random Jitter specification didn't proof itself very well...
 - Random Jitter should be specified
- BER of 10⁻¹² isn't sufficient for many end customer. 10⁻¹⁵ or even 10⁻¹⁷ is requested for many practical applications.
 - Recent technology progress should be enough to tighten this parameter to the above values
 - One Measurements technique has been demonstrated already to group during July Plenary meeting. Others are available as well.

How to start: PHY parameters

- 8b/10b coding scheme
- NRZ signaling
 - Has been proven as capable to drive 3.125 signals. Multiple IC vendors have demonstrated 40" + over legacy FR-4 backplanes and few connectors
 - Adopted by 802.3ak (CX4) for more challenging channel model (over 15dB attenuation at Nyquist rate)
- Predefined Pre-emphasis:
 - Successfully deals with ISI w/o additional power dissipation
 - Has limited effect on crosstalk parameters for NRZ signaling scheme
 - Well-known technique widely used for high-speed SERDES today also as optional feature in XAUI transceivers
- Equalization
 - It's always nice to have performance margin I
 - Can be left to the implementer depends on the selected BER target

Transmitter parameters: focus on pre-emphasis – Pro's and Con's

- Pro's:
 - Easier receiver implementation without transmit power increasing
 - Compliance measurement is well-defined and easy (almost [©])
 - Implementation is cheap and straightforward
- Con's
 - Emphasizes native high-frequency impairments NEXT/FEXT, RJ
 - Has to be pre-defined regardless actual communication link characteristics (assuming that no side information channel available)
- Bottom line:
 - When carefully adjusted to the channel parameters, provides powerful tool to increase operational distance with nominal SNR value for almost no charge.
 - The best effect is achieved when used in combination with receive-side based equalization

Transmitter parameters: focus on pre-emphasis -<u>Mathematically speaking...</u>

- If we'd like to leverage CX4 experience...
 - Pre-emphasis filter
 - pre-emphasis specified by $\boldsymbol{\alpha}$
 - Maximal and minimal filter outputs

$$y_{n} = \frac{1}{1 + \alpha} x_{n} - \frac{\alpha}{1 + \alpha} x_{n-1}$$

$$x_{n} = V_{peak}, x_{n-1} = V_{peak} \implies V_{Low} \equiv \frac{(1-\alpha)}{(1+\alpha)} V_{peak}$$
$$x_{n} = V_{peak}, x_{n-1} = -V_{peak} \implies V_{High} \equiv V_{peak}$$

Frequency response

$$H_{B}(z) = \frac{1}{1+\alpha} - \frac{\alpha}{1+\alpha} z^{-1}$$
$$|H_{B}(\theta)|^{2} = \frac{1-2\alpha\cos\theta + \alpha^{2}}{(1+\alpha)^{2}} \implies |H_{B}(0)|^{2} = \frac{(1-\alpha)^{2}}{(1+\alpha)^{2}} \qquad |H_{B}(\pi)|^{2} = 1$$

Pre-emphasis

$$1 - V_{Low} / V_{High} = \frac{(1 - \alpha)}{(1 + \alpha)}$$

Max = 100 % (V_{Low} - - > 0)
Min = 0% (V_{Low} = V_{High})

mysticem

Transmitter parameters: focus on pre-emphasis – Discussion

- From noise enhancement perspective for worst case condition (maximal length worst case insertion loss) it's best to have the highest pre-emphasis
- But when considering the full system application (crosstalk effects, thermal noise, etc) and when very short traces are a possibility splitting the load between the equalizer and pre-emphasis is advantageous
- Performance-wise, optimal value is determined as one that provides highest SNR value at the *slicer input*. Can be determined theoretically (with few reasonable assumptions) – with following full-system simulations
 - Jitter, crosstalk, AWGN and impairments affects are accounted automatically
 - Equalizer can be included or excluded from the simulation model
 - Once performed for worst-case channel, simulation should be redo for shortest (minimal ISI) channel model – to ensure there is enough margin left
 - Finally, detailed "template fitting" calculation procedure to be developed and proved in simulation. Especial attention to be put on the RL affect accommodation – most problematic one based on CX4 experience

Example of Xmt template proposal (taken from 802.3ak)

Transmitter parameters: focus on Jitter and RL spec

- Xmt Return Loss should be specified explicitly as it was done in 802.3ak
- Jitter generation parameters: while exact value must be derived based on the channel parameters and simulation results, one aspect is clear: leaving RJ parameter restricted by TJ value only (when DJ~0) causes lot of interoperability issues. Here is CX4 solution:
 - All three components RJ, DJ and TJ are bounded:
 - DJ ≤ 0.17UI
 - RJ ≤ 0.27UI
 - TJ \leq 0.35UI less the max(RJ) + max(DJ)!

How to start: Channel model

- 10G serial link requests are dominated
- Once we reached a broad consensus on modeling approach parameters, "low speed" portion of the model should be investigated more intensively
- Question to group: Should we defined additional channel model for 10G parallel and 1G serial PHYs only?
 - Will allow to support legacy backplanes/connectors
 - Will allow to target BER lower then 10⁻¹² not in conjunction with 10G serial link challenges
 - Will easier backward compatibility with XAUI and 1000BASE-X

How to start: Example of theoretical pre-emphasis calculation

- 802.3ae XAUI channel model extended to 40" was used
- No Crosstalk noise
- No Receive side equalization

Optimal $\alpha = 0.385$

Optimal Pre-emphasis =~ 44%

How to start: example of full-system simulation results

- 802.3ae XAUI channel model extended to 40" has been used
- Tx and Rx assumed to have 1.8G limited bandwidth
- Not worst-case jitter
- Complexity considerations have not been taken into account

Suggested Transmitter Electrical Characteristics

Parameter	Value	Justification
Signaling speed, per lane	3.125G±100ppm, GBd	Same as XAUI & CX4
Differential p2p output V, Min & Max	800mV – 1200mV	Same as CX4
Differential p2p output Voltage difference, max	150mV	Same as XAUI & CX4
Differential impedance	100Ohms	Same as XAUI & CX4
Differential output RL	-10dB @100-625MHz -10+10log(f/625) @>625MHz	Same as CX4
Common Mode Voltage, Min & Max	-0.4 – 1.9V	Same as CX4 (XAUI?)
Rise/Fall time, Min & Max	60 - 130ps	Same as XAUI & CX4
Differential Output Template	TBD Note: Has to be adjusted to channel's model parameters	Adopted by CX4
Output jitter (p2p, max) TJ = RJ + DJ RJ DJ	Note: Has to be adjusted to channel's model parameters 0.35 UI 0.27 UI 0.17 UI	TJ & DJ values are same values as required by XAUI and CX4 Additional restriction for RJ adopted by CX4 – see slide #10 for explanations
September 20(14 802 3an Task force meeting	mysticem

Suggested Receiver Electrical Characteristics

Parameter	Value	Justification
Bit Error Ratio, max	Equal or less then 10 ⁻¹² Question: Should we seriously consider lower BER request? 10 ⁻¹⁵ ? 10 ⁻¹⁷ ?	Same as XAUI and CX4.
Signaling Speed, per lane	3.125G ± 100ppm, GBd	Same as XAUI & CX4
Receiver Coupling	AC Note: unless 10G serial requirements will contradict	Same as XAUI & CX4
Differential p2p input levels, max	1200mV	Same as CX4;
Return Loss	-10dB @100-625MHz -10+10log(f/625) @>625MHz	Same as CX4
Differential impedance	100Ohms	Same as XAUI & CX4

mysticem

- Decide on the target BER
- Decide if we're going to support channel model in addition to the one defined for 10G serial mode
- Conduct full-system simulation model
- Decide on the Tx/Rx compliance points TP2/TP3 pair like CX4? TP1/TP4?
- Autonegotiation
- Clause 45 Register Map update if required to support 4-lanes 10G mode

Back-up: example of simulation model

