

Cathy Liu Joe Caroselli LSI Logic

TLOCK

LSI LOGIC

- This presentation is related to LSI Logic comments on 10GBASE-KR transmit equalizer requirements.
- Investigate the impact of transmit equalization setting range and accuracy on link performance in terms of slicer SNR.

- 1/T=10.3125GHz
- TX: 3-tap transmit FIR (programmable)
- RX: 5-tap DFE (adaptive)

1STLOGIC 3-Tap TX FIR Filter Reduces Pre- and Post-cursor ISI

- c₋₁ is to reduce pre-cursor ISI.
- c₁ is to reduce post-cursor ISI.
- 5-tap DFE at RX can further reduce the first five post-cursor ISI taps.

c₁ and c₋₁ are always negative and c₀ is always positive.

$$-c_{-1} + c_0 - c_1 = 1$$

- Analytic model is used to get slicer SNR at optimal sampling point.
 - Includes
 - Intersymbol Interference
 - Tx Jitter
 - Electronics (White) Noise
 - Crosstalk
 - Does Not Include
 - Receiver Sensitivity
 - Duty Cycle Distortion
 - Other Sources of DJ

Simulation Overview (Continued)

- The effect of one near-end crosstalk aggressor (the worst one) is considered.
- A simple RC model with pole at 0.75*baud rate is used for the transmitter.
- Mellitz capacitor-like package model included on both transmitter and receiver.
- Only DJ is from ISI.
 - No DCD, PJ included
- 0.010UI σ RJ added.
- Signal-To-Electronics Noise Ratio 45dB.
- DFE tap values are ideal.

Our simulation results show the required tap weight ranges are comparable to the current spec.

- ◆ c₋₁ up to -0.175
- ◆ c₁ up to -0.375

LSILOGIC C₁ Tap Weight Resolution vs. SNR Degradation

- SNR performance is quite sensitive to C₋₁ tap resolution.
 - Reducing pre-cursor ISI mainly relies on C₋₁ tap.
- Minimum resolution of 0.025 is required.

LSILOGIC C₁ Tap Weight Resolution vs. SNR Degradation

- Performance is not quite sensitive to C₁ as to C₋₁.
 - The same amount of tap weight offset of C₁ only causes approximately half SNR degradation of C₋₁.
- DFE at the receiver can further reduce post-cursor ISI.
- To get the same amount of performance accuracy, the step size of C₁ can be twice large of C₋₁.

Conclusion and Recommendations

- Tap weight resolution requirements for C₁ and C₋₁ are not the same.
- To remove post-cursor ISI accurately, there is trade-off between C₁ resolution and DFE tap resolution. However, DFE can be fully adaptive, which is the easier way to obtain the optimal equalization.
- The current specification requirement of minimum 128 states TX equalizer settings seems too large for some applications without TX coefficient training process.
- We suggest to reduce C₁ resolution to 0.05.
 - C₋₁ has 8 settings from 0 to -0.175 with step size of at least 0.025.
 - C₁ has 8 settings from 0 to -0.375 with step size of at least 0.05.