Transmitter Preemphasis: An Easier Path to 99\% Coverage at 300m?

Lew Aronson, Jim McVey, The-Linh Nguyen - Finisar
Tom Lindsay - Clariphy
January 24, 2005

Introduction

- Current Models Show 99\% Coverage at 300m a Challenge
- Penalty with Single Launch: PIE-D ~ 5.6dB
- Alternative Launches Proposed, but Reliability Concern
- Evidence that Transmitter Preemphasis Can Reduce Penalty Significantly
- Transmit Waveform Dispersion Penalty Test (TWDP) Shows Very

Significant Penalty Reduction with Reasonable Degrees of Preemphasis

- Appears to Hold over Full Channel Model Sets
- Works Somewhat Differently on MMF Links
- On Copper Links, Preemphasis can Open Receive Eye
- Simple, Monotonic Frequency Response
- On MMF Links, Preemphasis Generally doesn't Open Receive Eye
- Still Appears to Decrease the Penalty per TWDP Calculations
- Optical Link Experiment work started, but No Results Yet.

Modeling Demonstration - Bad Eyes

- Calculated TWDP Curves with Degraded Optical Eyes

Modeling- Preemphasized Electrical Eyes

- Calculated TWDP Curves with Preemphasized Electrical Eyes

Optical Demonstration Setup

- Goals:
- Measure Preemphasized Optical Eyes, Record for TWDP Analysis
- Measure and Compare OMA, ER, Microwave Spectrum of Transmitted Eye
- Record BER Curves for Full Link with Different Degrees of Preemphasis on Transmit Eye
- Record Microwave Spectrum of Received Eyes

Transmit Eyes - Case 1 No preemphasis

Transmit Eye from PT10C RX
~ 182 mV swing

OMA waveform output from PT10C RX

Power in Spectrum Out of PT10C RX: (PRBS31)
-11.67 dBm

Transmit Eyes - Case 3

Transmit Eye from PT10C RX

OMA waveform output from PT10C RX
~ 126 mV 'OMA' swing

Power in Spectrum
Out of PT10C
RX(PRBS31):
$-12.01 \mathrm{dBm}$

Transmit Eyes - Case 6

> Transmit Eye on DCA Plug-in
> Pavg $=-5.4 \mathrm{dBm}$ at Scope

Transmit Eye from PT10C RX

OMA $=-5.2 \mathrm{dBm}$ $E R=5.29 \mathrm{~dB}$

OMA waveform output from
PT10C RX
~ 177 mV 'OMA' swing

Power in Spectrum
Out of PT10C
RX(PRBS31):
-10.81 dBm

Transmit Eyes - Case 9

> Transmit Eye on DCA Plug-in
> Pavg $=-5.4 \mathrm{dBm}$ at Scope

$O M A=-6.6 \mathrm{dBm}$ $E R=3.69 \mathrm{~dB}$

Transmit Eye from PT10C RX

OMA waveform output
from
PT10C RX
~ 122 mV 'OMA' swing

Power in Spectrum Out of PT10C RX (PRBS31) :
$-11.57 \mathrm{dBm}$

Transmit Eyes

- More Transmit Cases Available.
- Recorded Waveforms for All transmit Eyes Available, but Not Yet Processed for TWDP Penalty.

Discussion on Normalizing Eye Amplitudes

- Is OMA a Fair Metric for Eye Amplitude for Preemphasized Eyes? - More Energy in Preemphasized Eye with Same OMA
- Total Energy Under Spectrum Possibly Better for This Experiment - Record Both Values for Eyes of Equal Average Power

Transmit Eye with Preemphasis
Pavg $=-5.46 \mathrm{dBm}$ at Scope

OMA $=-6.6 \mathrm{dBm}$ $E R=3.69 \mathrm{~dB}$

Significantly Less than No Preemphasis

Note Peaked
Frequency Response

Power in Spectrum
Out of PT10C RX:
-11.57 dBm
(Similar to no
preemphasis case)

Summary of Frequency Content in Transmit Eyes

- Comparison of the electrical spectra of various optical preemphasis cases generated (includes RX response)
- Normalized to same integrated RF power, plotted relative (point by point) to non preemphasized case (Case 1, not ploted)

Summary of Results

- Modeling shows Substantial Penalty Reductions ($\sim 1.8 \mathrm{~dB}$) from Reasonable Preemphasis on Example Electrical Eyes
- TO BE COMPLETED: Measurement of Penalty Reduction using Reasonable Preemphasis on Real Optical Eyes
- Eyes Far From Ideal, Much Better Probably Possible
- Even if One Argues that Preemphasis Only Has a Penalty Benefit Because of Extra Modulation power at Same OMA, That is Not the Issue:
- Real Goal is Not Saving 1 dB of Optical Power
- Real Goal is Making the EDC work on a Worse Fiber than it Could Without Preemphasis.
- I.e. Whether Preemphasis Can Make a System Function Where the EDC is Incapable at ANY Reasonable Power (Error Floor) without Preemphasis
- Even 1 dB Penalty Reduction in the Required TWDP limit, achieved through Preemphasis, Will Lead to Important Coverage Increases with Given EDC Performance Limits

Proposal for -LRM Standard

- Propose We Allow for Some Preemphasis Even Though More Work to be Done. Later Could be Used to Simplify Launch
- How would it Work When and If We Do get Experimental and More Theoretical Data?
- No Need to Prescribe Preemphasis Details, Simply Require Smaller TWDP Penalty
- Example: 1 dB improvement relative to the 47 ps 'nominal' transmit eye
- TWDP $=4.0 \mathrm{~dB}$ max Would Allow $\sim 5.0 \mathrm{~dB}$ max PIE-D Links wl Lindsay’s TWDP spec Proposal
- TWDP $=4.6 \mathrm{~dB}$ max Would Allow ~ 5.6 dB max PIE-D Links Which Clearly Gives 99\% Coverage
- Eliminate or Greatly Reduce Overshoot Limits on Eye Mask
- Relax Inner Eye Mask, or Consider Eliminating Eye Mask (need to consider TX jitter question)
- Retain OMA Definition Based on Long Square Wave (Use 8-10 bits vs Current 4 bits?)
- Allows More Total Modulation Power in Preemphasized Eye
- Clearly Define ER Measurement on Long Square Wave as Well (same pattern as OMA)
- Assuming we are using the extra margin to reduce EDC PIE-D requirements for same coverage:
- Choose TP3 Comprehensive Test IPRs to Correspond to Lower PIE-D (say 4.0 dBo)
- Rigorous Method would recompute IPR and coverage curves with nominal preemphasized signals.
- Simply reducing the PIE-D number for choosing the test impulses is probably very close.
- Choose TWDP Channel Responses for Larger PIE-D (say 5.0 dBo) with Nominal Eye (no PE)
- But keep IPR Shapes Similar to TP3 Impulse Response Choices

Further Work

- Extend TWDP Analysis to Latest Channel Models with Connectors to Confirm Generality
- GEN54YY and Cambridge Models
- Perform TWDP analysis on Captured Optical Waveforms
- Conduct Extensive Link Experiments
- Many Channel Responses
- Different Optical Preemphasis Implementations and Performance
- Different EDCs

Backup Slide - Modeling with Short EDCs

- Question, Do Modeling Results Apply to Finite, and in particular Short EDCs?

Infinite (well, very long) EDC.
1.8 dB Advantage for Strong Preemphasis

