

MATLAB code for TWDP

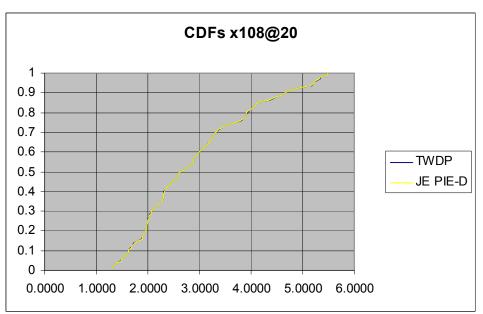
Proposed resolution for comment #109

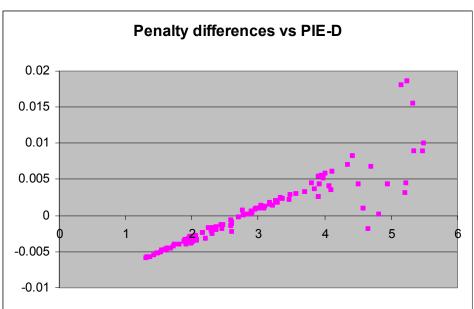
TWDP background clause 68.6.5.2

- <u>Transmitter & Waveform Dispersion Penalty</u>
- Method for estimating dispersion penalty of TP2 combined with channel
 - Total dispersion line item in budget
 - See http://grouper.ieee.org/groups/802/3/aq/public/nov04/lindsay_3_1104.pdf
 - Method captures actual TP2 waveform on scope
 - Channels based on TP3 work
- Penalty calculation requires SW tool
 - Basis of comment #109

SW tool

- SW tool is MATLAB code
 - Agreed as preferred approach
 - Code reviewed and agreed in TP2 calls
 - Informative overview also presented and discussed in TP2 calls
 - Submitted as separate comment #110
 - See
 http://grouper.ieee.org/groups/802/3/aq/public/comments/d1.
 O/P802.3aqD1.0com110Lindsay TWDPalgorithm.pdf
 - to go into Annex?




TWDP code comparison vs. PIE-D

- CDF comparison of code to John Ewen PIE-D data
- Comparison based on
 - 47.1 psec 20-80% Gaussian prbs9 simulated waveform
 - 7.5 GHz BT4 filter on capture
 - Cambridge r2.1 (108 comparisons)
 - 20 micron fixed offset launch
 - No connectors

Comparison results

Within 0.02 dB; negative differences possibly explained by round-off errors in PIE-D, simulated waveform, or elsewhere.

Summary of proposed resolution for #109

• Instruct the editor to include the MATLAB code discussed and agreed on TP2 calls into clause 68.6.5.2, Figure 68-6.