Efficient Estimation of Bit Error Rates and Eye Diagrams in Equalizer Enhanced Links

Kasyapa Balemarthy, Stephen E. Ralph, Steven W. McLaughlin
stephen.ralph@ece.gatech.edu

Georgia Institute of Technology
School of Electrical and Computer Engineering
Atlanta, GA
Bit Error Rate Estimation in 10Gb/s LANs

- Monte Carlo simulations are prohibitively long at a BER of 10^{-12}:
 - At least 100 errors for reliable BER estimation for an AWGN Channel
 - Need to transmit at least 10^{14} bits
 - Requires about 2.78 hours of real-time data at 10Gb/s
- Need to resort to BER estimation techniques
Method 1: Gaussian Approx. Approach

- **Model the ISI and the noise term together as AWGN**
- Assume 1’s and 0’s to be equally likely and independent
- Estimate means and standard deviations
 - at the zero rail \((m_0, \sigma_0)\)
 - at the one rail \((m_1, \sigma_1)\)
- Optimum Bit Error Rate (BER) and Threshold are then given by:

\[
P_e = \frac{1}{2} \text{erfc} \left(\frac{1}{\sqrt{2}} \left[\frac{m_1 - m_0}{\sigma_1 + \sigma_0} \right] \right) \quad D = \frac{m_0\sigma_1 + m_1\sigma_0}{\sigma_1 + \sigma_0}
\]

- **But in practice, input to decision device is the sum of Gaussians**
 - each corresponding to one combination of neighboring bits
 - Hence BER estimate is not correct
Method 2: ISI Pattern Approach

- Model input to the decision device as a sum of Gaussians
 - Mean of each Gaussian depends on the adjacent bits

- For each transmitted bit find the ISI pattern (or Gaussian) to which it belongs
- Estimate means and standard deviations of each Gaussian
- Bit Error Rate at a threshold D and channel span L is given by:

$$P_e = \frac{1}{2^L} \sum_{i \in S_0} \text{erfc} \left(\frac{D - m_i}{\sqrt{2}\sigma_i} \right) + \frac{1}{2^L} \sum_{i \in S_1} \text{erfc} \left(\frac{m_i - D}{\sqrt{2}\sigma_i} \right)$$

- **Complexity of Method 2 results in Long simulation times**
 - increases exponentially with channel memory
 - Also requires large number of bits to reliably estimate mean & std. deviation
Proposed Method: ISI Statistics Analytically

- Assume that there is no error propagation in the DFE
 - Usually valid at BERs lower than 10^{-5}; we are operating at even lower BERs
 - Then $\hat{x}_n = x_{n-\Delta}$
 - x_n denotes the transmitted bit for the nth bit period and
 - Δ is an appropriately chosen delay

- **Entire system up to CDR is a linear filter with known coefficients!!**
 - System is from x_n to w_n
 - Ideal equalizer coefficients are determined based on channel response
Proposed Method contd.

• Thus the Input to the threshold device is:

\[w_n = d_{\Delta} x_{n-\Delta} + r_n + \nu_n; \quad r_n = \sum_{i \neq \Delta} d_i x_{n-i} \]

 - Where \(r_n \) corresponds to the residual ISI and \(\nu_n \) is the additive noise

• **Probability Density Function, \(\hat{P}(r_n) \), of ISI can be computed analytically**
 - Since its Characteristic Function is a direct function of above coefficients
 - And the input alphabet statistics

• And so the minimum BER and optimum Threshold are given by:

\[P_e = \frac{1}{2} \int_{-\delta/2}^{\delta/2} p(y) \text{erfc} \left(\frac{d_{\Delta}/2 - y}{\sqrt{2}\sigma} \right) dy; \quad D = \frac{d_{\Delta} + \sum_{i \neq \Delta} d_i}{2} \]

• Where \(\delta = \sum_{i \neq \Delta} |d_i| \)
Results: ISI Statistics

- **Two feed-forward taps and One feedback tap**
- Probability Density Function of ISI at input to slicer
- Non-Impulsive nature of ISI PDF indicates significant residual ISI
- Non-Gaussian nature of ISI evident

Increasing SNR

Red for zeros
Blue for ones
Results: ISI Statistics

- Five feed-forward taps and Five feedback taps
- Non-Gaussian ISI at low TX powers
- Negligible ISI at high TX powers

Increasing SNR

Red for zeros
Blue for ones
Results: BER Comparison

2 FF Taps + 1 FB Tap case:
- Single Gaussian Approx. (Method 1) deviates significantly with fewer equalizer coefficients
- Multiple Gaussian Approach (Method 2) better but still deviates
 - Since ISI is assumed to have contributions from only two adjacent bits

5 FF Taps + 5 FB Taps case:
- Estimates from all three approaches agree at high sensitivities
- Methods 1 & 2 still deviate at low sensitivities: ISI is not Gaussian in this regime

Proposed method is about 1000x times faster than Method 2 for all transmit powers!!
Estimation of Deterministic Eye Diagram

- For each sampling phase, noise-free input to slicer:
 \[w_n = d_{\Delta} x_{n-\Delta} + \sum_{i \neq \Delta} d_i x_{n-i} \]
- For each value of \(x_{n-\Delta} \) (zero)
 - Maximum value of ISI = sum of all positive \(d_i \)
 - Minimum value of ISI = sum of all negative \(d_i \)
 - When \(x_{n-\Delta} = 1 \), we need to add \(d_{\Delta} \) to each max/min value
 - Both can be exactly computed
- Can be used to find optimum sampling instant and threshold also
Contour Plots

- Proposed technique can be used to quickly explore the equalizer design space via Contour Plots
- ISI Penalty = additional RX sensitivity required to achieve BER of 10^{-12}
Conclusions

• An efficient BER estimation method has been proposed

• Advantages:
 ➢ **Accurate:**
 • More accurate than other methods when significant ISI is present
 • At least as accurate as other methods when ISI is negligible
 • Can even be applied at the input to the equalizer with accurate results
 ➢ **complexity that increases linearly with channel memory**
 • As opposed to exponential complexity of Method 2
 ➢ **about 1000x faster than other techniques**
 ➢ **Independent of the equalizer adaptation technique**

• Permits easy estimation of the Deterministic Eye
 ➢ Can also find optimum sampling instant and threshold

• Permits quick exploration of the equalizer design space