Compatibility between NRZ EDC and Optical Mode Filtering Proposals

Presented by Michael Lawton, Agilent Technologies 14 July 2004

Contributions and support from:

Piers Dawe, Michael Lawton Nick Weiner Lew Aronson

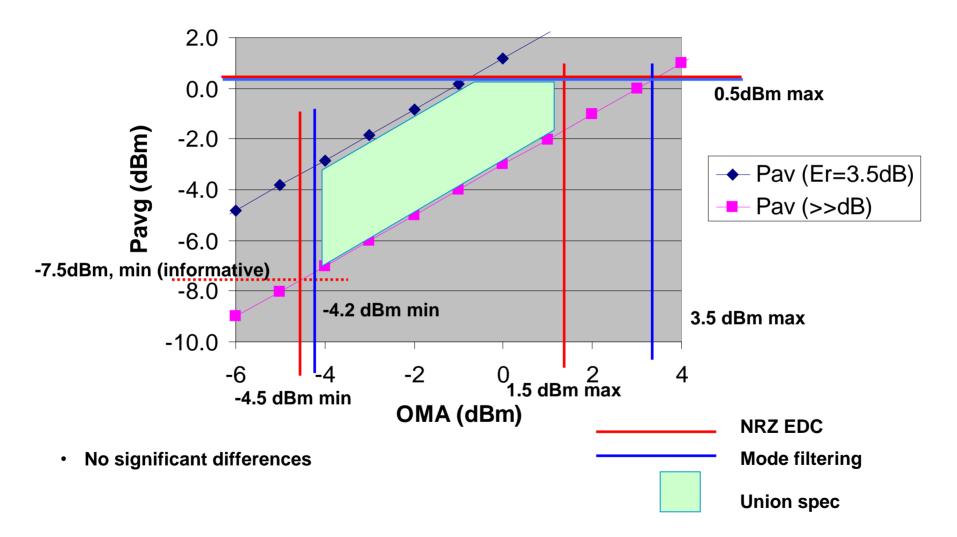
Agilent **Phyworks Finisar**

Oregon

Summary

- Presentation in response to an action given by David Law at the May meeting
 - "Can we combine Optical Mode filtering and NRZ EDC and develop a single spec, if not why not?"
- Compared TP2 and TP3 tables for NRZ EDC and Mode filtering approaches

Transmitter Parameter Differences (TP2)

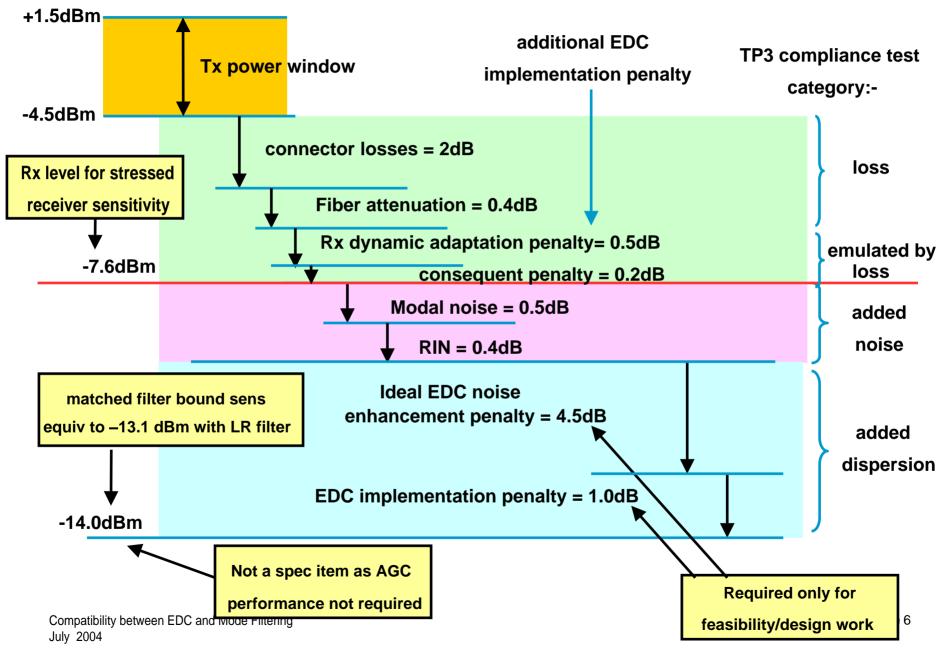

Description	Туре	MODE FILTERING*	NRZ EDC	Union spec?	Unit
RMS spectral width	max			Yes but limits scope of implementation	nm
Average launch power (informative)	min	-7.2	-7.5	Yes	dBm
Optical modulation amplitude	max	3.5	1.5	Yes	dBm
Optical modulation amplitude	min	-4.2	-4.5	Yes	dBm
Transmitter eye mask definition {X1, X2, X3, Y1, Y2, Y3}		?	{0.25, 0.40, 0.25, 0.28, 0.4} relaxed tbd		
Encircled flux test $50\mu m$ patch cord		NA	>86% in 19µm radius <30% in 4.5µm radius	NO test criteria mutually exclusive with Mode filtering approach	
Encircled flux test 62.5µm patch cord		NA	>86% in 24µm radius <30% in 4.5µm radius	NO test criteria mutually exclusive with Mode filtering approach	
Launch beam conformance		0.5		No test criteria mutually exclusive with NRZ EDC approach	dB

spectral width limits scope of implementation

• Launch requirements are mutually exclusive Compatibility between EDC and Mode Filtering

10GBASE-LRM Transmitter Power Window

10GBASE-LRM Launch Powers



Link Power Budget (informative)

Parameter	Mode Filtering*	NRZ EDC	Comments	Units
Connector losses (by fiber type)	1	2.0	ok (lower loss for mode filtering)	dB
Fiber attenuation (220m)	0.5	0.4	ok	dB
Mode selective loss (includes source induced modal noise)	6	0	need more detail on modal noise contribution	
Modal noise penalty	??	0.5		dB
RIN penalty	??	0.4	similar to NRZ?	dB
Rx Dynamic Adaptation Penalty	?	0.5	need more detail on mode filtering Rx adaptation	dB
Consequent Penalty		0.2	unallocated = 0.5dB	dB
EDC insertion penalty	1	4.5+1	need more detail on mode filtering EDC penalty	
unallocated	0.5			
Total	9dB	9.5		dB

- Whilst the totals are similar the breakdowns are significantly different this represents a challenge for Rx testing
- Mode filtering proposal needs more information in support of modal noise and EDC penalty

Interpreting the EDC Link Budget (OMA)

+3.5dBm Tx power window **TP3 Compliance test** category:--4.2dBm excess connector loss in channel = 1dB channel loss Fiber attenuation = 0.5dB unallocated = 0.5 dB -6.2dBm Mode selective loss = 6dB receiver includes modal noise **Rx level for stressed** loss **Rx sensitivity @ TP3** EDC insertion penalty = 1.0dB added dispersion -13.2 dBm **Rx level for link** with no dispersion

Interpreting the Mode Filtering Link Budget (OMA)

TP3 Conformance Testing 10GBASE-LR ...

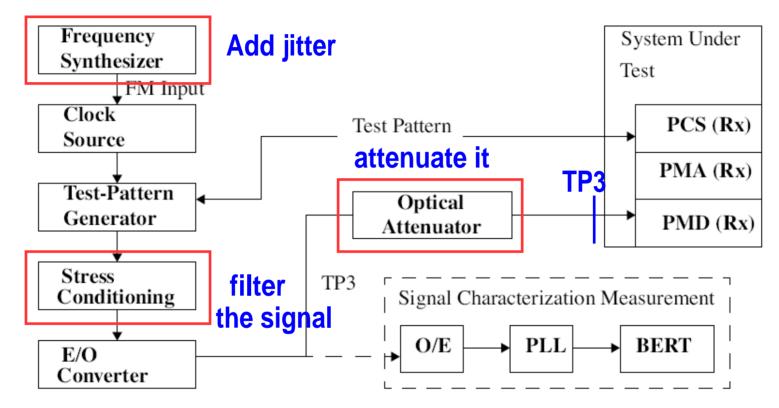
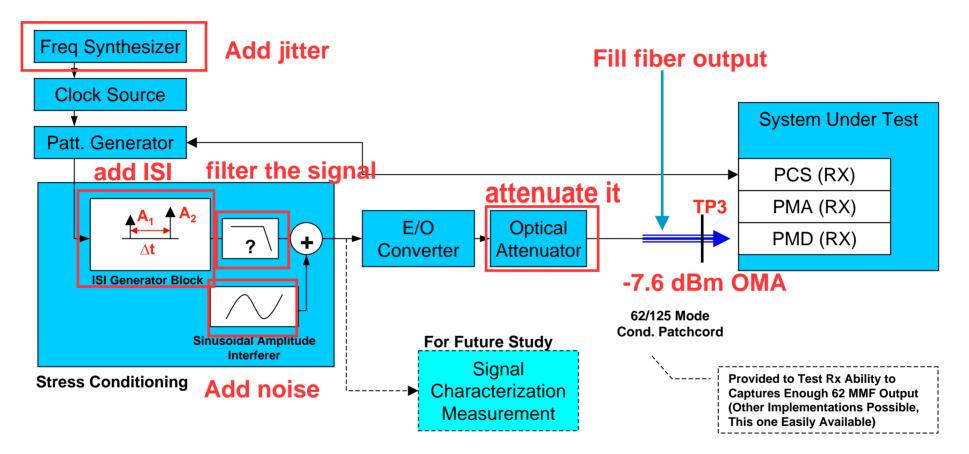
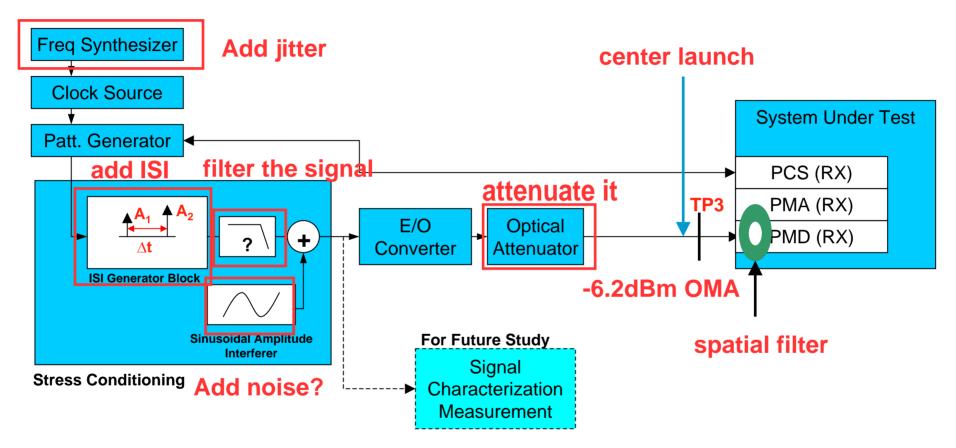



Figure 53–10-Receive jitter test block diagram

• Diagram taken from 802.3ae

TP3 Conformance Testing ... NRZ EDC



- Diagram taken from presentation to be given by Lew Aronson
- Approach is similar to 10GBASE-LR with additional stress terms:-

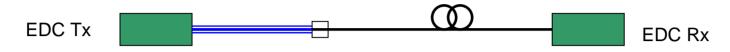
• ISI, Modal noise, RIN

Compatibility between EDC and Mode Filtering July 2004

TP3 Conformance Testing ... Mode Filtering + EDC

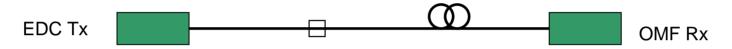
- This test would require different parameters for ISI, noise and attenuation
- · Test would also need to be done without a center launch patchcord

Receiver parameters (TP3)

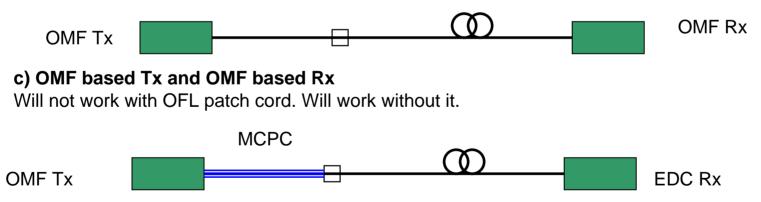

Parameter	Туре	Mode filtering*	NRZ EDC	Union spec	Unit s
Received OMA	max	NA	+1.5		dBm
Average receive power (informative)	min	-14.7 (-8.7)**	-9.9	possible if spatial filter is internal to Rx and wide area detector used.	dBm
Receiver sensitivity in OMA (informative)	max	-13.2 (-7.2)**	NA		dBm
Receiver sensitivity with ISI only in OMA	max		???		dBm
(Static) Stressed receiver sensitivity in OMA (with ISI and sinusoidal jitter and noise applied)	max	-6.2?	-7.6 (TBC)	very different tests	dBm
3dB electrical bandwidth	max	7.8	NA		GHz

** numbers in brackets denote the power figure as measured by a wide area detector

Is there a single specification ...


- No:
 - Tx: Two proposals have mutually exclusive launch requirements at TP2 Requires a restricted spec to meet spectral width requirements
 - Rx: Requires two completely different specification tables
- Is any level of inter-operability achievable?
 - In theory a limited level of interoperability could be achieved by defining 2 transmitters (with different patchcords for their respective launch requirements) and 2 receivers. These could then be used in appropriate combinations to provide working links
 - see next slide for permutations
 - This requires access to both ends of the link and is stretching the limits of practicality
 - Not robust enough to be considered within a standard
- WHILST THIS WOULD BE FEASIBLE IT DOES NOT REPESENT AN OPTIMAL SOLUTION AND HENCE NOT ONE THE STANDARDS GROUP SHOULD FOLLOW

Compatibility can be achieved if launch conditioning is external to the module ...


a) EDC based Tx and Rx

Depending on channel will work with or without patch cord. Performance will be better with a patchcord

b) EDC based Tx and OMF based Rx

Will not work with OFL patch cord. Will work without it, assuming center launch is specified.

d) OMF based Tx and EDC based Rx

Depending on channel will work with or without patch cord. Performance will be better with patchcord

Conclusions

- No union spec is possible. A combined specification would require separate TP2, TP3 tables for both Tx and Rx
- Some level of interoperability could be supported if the launch was made external to the module
 - specification would have reduced scope of implementation compared with NRZ EDC
- Users in the field would need to "experiment" with and without patchcords to support interoperability
- Recommend the group do not attempt to develop a union spec which combines mode filtering and NRZ EDC