

Statistical Study of NRZ, PAM-4, EDC, and Low-Cost Optics

Norman Swenson Paul Voois

IEEE 802.3, Portland, OR July 12-15, 2004

Supporters

- The following people support the conclusions of this presentation:
 - Abhijit Shanbhag, Scintera Networks
 - Petre Popescu, Quake Technologies

Objective

- Determine relative advantages of NRZ and PAM-4 when combined with EDC and lowspeed optics under variety of conditions
- Vary channel length, channel model, EQ metric, laser rise time
- Overarching principle: simpler is better. NRZ should be used unless PAM-4 shows compelling advantage

Simulation Parameters

- 16 cases total
- Laser (2 cases)
 - Gaussian impulse response
 - 20-80% rise time
 - Case A: 47.1 ps (Nominal 10GBase-LR)
 - Case B: 80 ps (nominal 4G)
- Fiber Model (2 cases)
 - Case A: Cambridge data set (65 fibers), v2.0
 - 17, 20, 23u offset (195 sub-cases)
 - Case B: Gaussian

Simulation Parameters (cont'd)

- Fiber Length (2 cases)
 - Case A: 220m
 - Case B: 300m
- Receiver
 - 4th order Bessel Thompson
 - 3 dB Electrical BW: 7.5 GHz for 10G receiver
- Channel Metric (2 cases)
 - Case A: PIE-L
 - Case B: PIE-D

Calculation of Relative Margins

- Gaussian case
 - Relative margin is difference between PIE dispersion penalties for PAM-4 and NRZ
- Cambridge case
 - Relative penalty is difference between PIE dispersion penalties for PAM-4 and NRZ at 80% coverage
 - Each fiber/offset treated as a separate point in statistical population

Relative Margins

		Relative Margin (dB)						
	Cambridge 2			220 m, 10G Rcv	300m, 10G Rcv			
		Tx Speed	10G 4G	N 1.5 N 0.7	N 1.1 N 0.3			
PIE-D								
д	Gaussian			220 m, 10G Rcv	300m, 10G Rcv			
		Tx Speed	10G	P 0.8	P 1.5			
			4G	P 1.1	P 1.6			

		Relative Margin (dB)						
PIE-L	Cambridge 2			220 m, 10G Rcv	300m, 10G Rev			
		Tx Speed	10G	N 0.6	P 0.3			
			4G	P 1.3	P 2.1			
	Gaussian			220 m, 10G Rcv	300m, 10G Rcv			
		Tx Speed	10G	P 4.5	P 4.1			
		-	4G	P 4.7	P 3.7			

P n means PAM-4 is n dB optical better than NRZ N n means NRZ is n dB optical better than PAM-4

Summary

- Gaussian channel model (more severe channel), PAM-4 is better in all cases
- Cambridge model, Linear Equalizer:
 - NRZ better at 220m with 10G Xmit
 - PAM-4 better at 300m or 220m with 4G Xmit
- Cambridge model, Decision Feedback Equalizer:
 - NRZ better in all cases (220 m or 300m, 10G or 4G xmit)

Conclusions

- With Cambridge model (current candidate for "official" model), NRZ better than PAM-4 in most cases of interest
 - Advantage could switch if:
 - Channel model gets worse (towards Gaussian), or
 - Limits are determined by linear equalizer capabilities (under certain conditions)
- Recommendation
 - NRZ should be baseline
 - PAM-4 should be employed if and only if needed as Task Force studies progress
- Area for further study: Low-speed receiver
 - Lower noise/greater distortion tradeoff

9

