

Advanced Signal Processing Enabling Next Generation Communications and Networking Systems

Experimental Results with TIA Round Robin MMF and OM3: Vendor Data for EDC-Based 10GBASE-LRM

Venu Balasubramonian, Abhijit Shanbhag Scintera Networks

EDC: Technical Feasibility Perspectives

- Supports a minimum of 220m over FDDI-grade MMF with a maximum power penalty of under 5-6 dB.
- Should be fully blind adaptive, plug and play without any need for training sequences.
- Should be robust w.r.t. time-varying channel effects.
- Should allow for enhanced yield on the receive and/or transmit optics and forthcoming low-cost optics technologies.
 - Test results not included in current contribution.
- Supports a minimum of 300m over selected MMF.
 - Test results included in current contribution use corner-case OM3.
- Feasibility in terms of low-power and form factor to enable Distinct Identity clause of 10GBASE-LRM
 - Can fit into small form factor modules such as XFP with serial PMA

Optical Test Set-up

PRBS 2²³-1 NRZ

Test Set-Up Details

- Transmit Optics:
 - Fabry Perot laser at 10G
 - Tx power: -5dBm
- MMF:
 - 3 spools of 300m of worst-case –SX fiber (source: NIST)
 - Manufactured in May '98 for TIA Round Robin (TIA-RR).
 - 3 spools of corner case OM3 fiber (source: John George, OFS)
- Receive Optics:
 - Sensitivity at BER of 1e-12 of -13 dBm

TIA-RR MMF Fiber Data

(Courtesy John Schlager -NIST)

ivext Generation Communications and iverworking

era

Eval Board

Advanced Signal Processing Enabling Next Generation Communications and Networking Systems era

TIA-RR MMF Fiber Pulse Response & Input Eye Diagram at EDC

NIST 3

7

Link Performance with TIA Round Robin fibers (Static)

Fiber Shaker: To Create Time-Varying Channel

Induces fiber displacement of over an inch within 10's of ms.

Time-Varying Channel (incl. Modal noise effects) with NIST MMF 1

BER can change 3-5x within 100ms = 20 min) With EDC: No Errors recorded

Corner Case OM-3 Fiber Pulse Response & Input Eye Diagram at EDC Courtesy: John George, Yi Sun (OFS)

1409DC

OFL BW: 610 MHz,

OFL BW: 610 MHz,

Link Performance with OM-3 fibers: Courtesy: John George, Yi Sun (OFS)

Scintera N E T W O R K S

Conclusions

- Experimental data demonstrating robust performance at up to 300m for TIA round robin fibers (3 spools with worst-case –SX performance): power penalty < 5dB.
 - Blind adaptive
 - Robust w.r.t. time-varying effects.
 - Suggests significant margin at 220m.
 - Significant further performance enhancement possible by enhancing equalization capability.
- Experimental data demonstrating robust performance at up to 300m for corner case OM-3 fiber): power penalty < 4dB.
- Suitable for implementation in small modules.
 - Modules already demonstrated by multiple vendors in different form factors.
- Large parallel body of simulation-based work supporting technical feasibility.
- Further experimental results for corner cases of FDDI-grade and selected MMF will be presented in future meetings.

Many thanks to EDC SIG for very useful feedback.