Open Source Matlab Simulation Model for EDC based 10GBASE-LRM

Sudeep Bhoja - Big Bear Jesper Hanberg - Intel Petre Popescu - Quake Abhijit Shanbhag - Scintera Kevin Witt - Vitesse

Supporters

John Ewen – JDS Uniphase Nick Weiner – PhyWorks **Eric Borisch – JDS Uniphase** Sudeep Bhoja - Big Bear Jesper Hanberg – Intel Andre Van Schyndel - Bookham **Petre Popescu - Quake Abhijit Shanbhag - Scintera** Kevin Witt – Vitesse Ryan Latchman – Gennum Stefano Bottacchi - Infineon

Objectives

- Unified comprehensive simulation platform to assist in and guide EDC-based 10GBASE-LRM standards effort
 - Link budget feasibility of at least 220m for FDDI-grade fiber and 300m of selected MMF with different equalization structures and architectures
 - Compliant transmitter parameters at TP2 and receiver parameters at TP3; Assist in evaluating different channel metrics at TP2, TP3
 - Quantify penalties due to important miscellaneous impairments including jitter, time-varying ISI, etc...
 - Study sensitivity of EDC to various parameters such as Tx & Rx Bandwidth, RIN etc...

Comprehensive Simulation Platform: Need for Unified Framework

- There have been numerous simulations put forward in the various Study Group presentations
 - Infer a 3-6dB for Equalizer penalty, but currently difficult to come up with a precise number
 - Methodology & details for the various simulations are not transparent
 - Definition of coverage?
 - What is included? Is the reference back-to-back or Rx OMA sensitivity?
 - Various channel models used; 802.3z National Labs, Cambridge, Measured impulse responses
 - Little data provided on time tracking & none on jitter
- These shortfalls need to be addressed for consistency, for comparisons, and for eventual 'fine tuning' of the specifications

Comprehensive Simulation Platform: Need for Unified Framework

- Use similar methodology as in 10GBASE-T & 1000BASE-T
- Matlab Open Source model for "textbook" Equalizers
 - Agree on an approach
 - Peer review of the details
 - Results will change as channel model evolves
- Matlab model to minimize/avoid using toolboxes
- Matlab model can assist in developing and confirming the methodologies, performance figures of merit, parameters and feasibility for compliance within D1.0

Top-Level Simulation Block Diagram

Tx & Rx Link Parameters

- Transmitter rise time assume guassian
 - Default: 47.1ps as in IEEE 802.3ae LR link model
- RIN is assumed white and gaussian at the Transmitter, but spectrally shaped by the fiber and the Rx
 - Default: -128 dB/Hz
- TIA Noise PSD S(f) assumed constant and computed from receiver sensitivity according to
 - $S(f) = S_{OMA}^2 / (8 Q_0^2 B_n)$, where
 - S_{OMA} = Sensitivity in OMA
 - $Q_0 = 7.03$ for BER = 10^{-12}
 - B_n = Noise equivalent bandwidth
 - S(f) is referred to optical domain; hence units are mW²/GHz
- Receiver can be parameterized

- Default: $S_{OMA} = -12.6 \text{ dBm}$. BW = 7.725 GHz, $B_n = 1.032^*B$

- Thus
 - $S(f) = 9.63 \times 10^{-7} \text{ mW}^2/\text{GHz}$

EDC Power Penalty – LE & FFE+DFE

- Model takes a collection of impulse responses and sweeps allocated dispersion penalty for yield estimates
- Use well established and documented¹ Minimum Mean Square Error (MMSE) analysis for finite length FFE/DFE based Rx
- MMSE results automatically account for residual ISI and noise
- T/2 spaced Equalizer are simulated
 - Allows the FFE to implement a matched filter followed by a T spaced Equalizer for optimal performance
- Tap Coefficients: (Wiener) $w = R^{-1} \cdot P$ and Adaptive LMS-based
 - R is the channel autocorrelation matrix of the sampled data signal
 - P is the channel cross-correlation vector
- Number of taps can be chosen as a parameter
 - Default Parameters:
 - LE 12 taps
 - DFE 9 tap FFE + 3 tap Feedback

Ref 1 - pp521-524 in "Digital Communication" by Edward Lee and David Messerschmitt

IEEE P802.3™ May 2004

EDC Power Penalty – MLSD

- Supported within the simulation platform to obtain the Maximum Likelihood Sequence Detection (MLSD) bound.
 - Complex to implement but equalization structures with performance between DFE and MLSD may be implemented
- MLSD simulated as whitened matched filter followed by trellis-based sequence detection.
- Whitened matched filter implemented as T/2 spaced FIR filter.
- T-spaced channel impulse response (to generate state metric for sequence detection) obtained from FIR-based channel emulator.
- Number of trellis states for MLSD may be selected as a parameter.
- Number of taps for whitened matched filter front-end may be selected as parameter.

EDC Power Penalty - Jitter

- Phase jitter is assumed white and Gaussian, and it is converted into (colored) amplitude noise
 - Oscar Agazzi, Equalization ad hoc
 - http://www.ieee802.org/3/ae/public/adhoc/equal/agazzi_1_0301.pdf
 - First and second derivatives of the pulse response are used to estimate jitter induced amplitude noise
- RMS jitter on the recovered clock is parameterized
 - RMS jitter is composed of
 - Residual VCO phase noise
 - Data dependent Jitter due to phase detection
 - Jitter due to TIA noise
 - Default RMS jitter parameter: 3ps

Power Penalty – Time Varying Channels

- Methodology described in bhoja_1_0304
- Establish benchmark by treating each constituent impulse response as static and compute the MMSE theoretical performance
- Adaptive DFE updated at full rate by a decision directed LMS adaptation algorithm
- The adaptation step size $\boldsymbol{\mu}$ determines speed of adaptation
 - For stability with LMS adaptation μ << 2 / λmax
 - λ max the maximum eigenvalue of the autocorrelation matrix R
 - µ should be small to keep excess MSE small
 - Sub sampled implementations of LMS "effectively" decrease the step size $\boldsymbol{\mu}$
- Adaptation step size is parameterized
 - Default µ 1E-3

Summary

- Open Source Matlab model is currently under development
 - Goal is to assist in and guide EDC-based 10GBASE-LRM standards effort
 - Link budget feasibility
 - Aid in compliance test methodology and compliance parameters
- Comprehensive Simulation model can study sensitivity of EDC to
 - Jitter
 - Temporal channel variation
 - Receiver Bandwidth
 - Transmitter Bandwidth
 - RIN
- Simulation model under development and a subset will be available shortly