Updated estimates of ISI power penalties, applied to 10GBASE-LRM.

Rick Pimpinella and Al Brunsting* Fiber Research Department

Panduit Corp., Orland Park, IL 60427
* presenter

Outline

- Motivation and introduction
- ISI in the time domain.

(ISI = Inter-Symbol Interference [1].)

- ISI in the frequency domain
- Compare ISI in the 2 domains + spreadsheet [2]
- Changes in ISI power penalties
- Conclusions.

Motivation and introduction

- ISI dominant source of bandwidth limitations
- No apparent sources ISI from 1st principles to final results.
- Provide details: math & intuitive.
- Update theory for enhanced generality & accuracy.

ISI in the time domain

- Not all components are shown
- Each component has a time response. Pulses are distorted.
- Shape of p_{out}(t) is different from shape of p_{in}(t).
- Amplitude of p_{out}(t) is usually less than that of p_{in}(t).

Panduit Corp. Rick Pimpinella & Al Brunsting

Panduit Corp. Rick Pimpinella & Al Brunsting May 25 - 26, 2004 | Long Beach, CA IEEE P802.3aq Task Force slide 5 of 18 ISI power penalties

ISI in the time domain

Starting point, first principles. Convolution Theorem [4-5]. distortions (source, fiber receiver) [3] $p_{out}(t) = \int_{-\infty}^{\infty} p_{in}(u) \cdot h(t-u) \cdot du$ variable of integration, secs. time no distortions

(several math steps. See Appendix & ref [6].)

$$p_{out} = erf\left[\frac{2.564}{2 \cdot \sqrt{2}} \cdot \begin{pmatrix} T_{eff} \\ T_c \end{pmatrix}\right] - 10\% \text{ to } 90\% \text{ rise time due to all the components in the optical channel.}$$

Error function

Panduit Corp. Rick Pimpinella & Al Brunsting May 25 - 26, 2004 | Long Beach, CA IEEE P802.3aq Task Force slide 6 of 18 ISI power penalties

ISI in the time domain, an example.

- 10 Gb/s = data rate, 100-ps = bit period.
- 9-ps = duty cycle distortion [includes amplifier phase distortions (transmitter & receiver)].
- Effective time width, $T_{eff} = 100 9 = 91$ -ps.
- MMF: 2000 MHz*km & 50/125μm.
- Default rise times for transmitter and receiver (spreadsheet [2])

Panduit Corp. Rick Pimpinella & Al Brunsting

ISI in the frequency domain

Starting point, first principles. Convolution Theorem.

Simple: Components are just multipliers in the frequency domain.

[several math steps. See Appendix.]

$$p_{out}(t=0) = \int_{-\infty}^{+\infty} \left\{ \frac{\sin(\pi \cdot v \cdot T_{eff})}{(\pi \cdot v)} \right\} \cdot \left\{ \exp\left[-\frac{\left(2 \cdot \pi \cdot v \cdot \sigma_c\right)^2}{2} \right] \right\} \cdot dv$$

Evaluate numerically. Compare with time domain result.

Panduit Corp. Rick Pimpinella & Al Brunsting

Compare ISI in the 2 domains + spreadsheet [2]

<i>L</i> , m = 2		Tc, ps = 66.43		
	Pisi, dB	Pisi, dB	Pisi, dB	
	freq.	time	spread-	
Teff, ps	domain	domain	sheet	
70	1.894	1.891	1.897	
80	1.222	1.220	1.224	
91	0.749	0.746	0.750	
100	0.493	0.492	0.494	

<i>L, m</i> =	200	T c, ps = 83.81			
	Pisi, dB	Pisi, dB	Pisi, dB		
	freq.	time	spread-		
Teff,ps	domain	domain	sheet		
70	3.651	3.650	3.655		
80	2.535	2.534	2.538		
91	1.727	1.725	1.729		
100	1.262	1.262	1.264		

<i>L, m</i> =	300	Tc, ps =	101.43		L , m	= 400	T	c, ps =	121.90
	Pisi, dB	Pisi, dB	Pisi, dB			Pisi,	dB P	isi, dB	Pisi, dB
	freq.	time	spread-			fre	q.	time	spread
Teff, ps	domain	domain	sheet		Teff, p	s dom	nain <mark>d</mark>	omain	sheet
70	6.066	6.061	6.073		70	11.1	147 1	1.149	11.167
80	4.247	4.244	4.252		80	6.9	96	6.996	7.004
91	3.015	3.009	3.018		91	4.9	13	4.909	4.918
100	2.310	2.308	2.313		100	3.8	29	3.829	3.832
					<i>L, m</i> =	2	200	300	400
Summary of the differences						max. dB	max. dB	max. dB	max. dB
Summary of the unterences				Teff, ps	diff.	diff.	diff.	diff.	
					70	0.005	0.005	0.012	0.020

(Differences are negligible compared to the total power budget of 7.3-dB [12].)

 max. dB
 <t

Panduit Corp. Rick Pimpinella & Al Brunsting

Changes in ISI power penalties

Panduit Corp. Rick Pimpinella & Al Brunsting May 25 - 26, 2004 | Long Beach, CA IEEE P802.3aq Task Force slide 10 of 18 ISI power penalties

Conclusions.

- Details of ISI power penalties. Intuitive. Time & frequency domains.
- Comparisons: (1) time domain, (2) frequency domain, (3) IEEE spread sheet model [2]. Differences were negligible.
- Equivalence established between time and frequency domains. Advantages of time domain: intuitive & scopes.
- Advantages of frequency domain: (1) Each component need not be Gaussian. (2) More effects can be added.

 $P_{out}(v) = P_{in}(v) \cdot P_s(v) \cdot P_f(v) \cdot P_r(v) - \text{Need not be Gaussian}$ & include more terms.

• Improved accuracy is anticipated.

Panduit Corp. Rick Pimpinella & Al Brunsting

Appendix 1 Supporting details are given here which are not part of presentation.

Starting point, basic principles, Convolution Theorem:

4 p (f)

Assume time response for optical link is Gaussian [6]:

SD of the time response for optical channel (transmitter, MMF, & receiver). $h(t') = \frac{1}{\sigma_c \sqrt{2 \cdot \pi}} \cdot \exp\left[-\frac{1}{2} \cdot \left(\frac{t'}{\sigma_c}\right)^2\right] \quad \text{time [to be substituted in (4)]} \quad (3)$

Substitute (2) & (3) into (1). Set *t*' = *t* - *u*:

$$p_{out}(t) = \frac{1}{\sigma_c \sqrt{2 \cdot \pi}} \cdot \int_{T_{eff}/2}^{T_{eff}/2} \exp \left[-\frac{1}{2} \cdot \left(\frac{t - u}{\sigma_c} \right)^2 \right] \cdot du$$
(4)

10% to 90% rise time
$$T_c = 2.564 \cdot \sigma_c$$
 (5)

Panduit Corp. Rick Pimpinella & Al Brunsting May 25 - 26, 2004 | Long Beach, CA IEEE P802.3aq Task Force slide 12 of 18 ISI power penalties

Change variables to that error function, erf, can be used [7]:

$$\int_{a}^{b} \exp\left[-w^{2}\right] \cdot dw = \frac{\sqrt{\pi}}{2} \cdot \left[erf(b) - erf(a)\right]$$
(6)

Change from *u* to *w*: $w^{2} = \frac{1}{2} \cdot \left(\frac{t-u}{\sigma_{c}}\right)^{2}$ Use (5): $w = \frac{2.564}{\sqrt{2}} \cdot \left(\frac{t-u}{T_{c}}\right)$ (7)

Change limits of integration in (4) using (7):

$$a = \frac{2.564}{\sqrt{2}} \cdot \left(\frac{t + T_{eff} / 2}{T_c}\right) = \frac{2.564}{2 \cdot \sqrt{2}} \cdot \left(\frac{2t + T_{eff}}{T_c}\right) \qquad b = \frac{2.564}{2 \cdot \sqrt{2}} \cdot \left(\frac{2t - T_{eff}}{T_c}\right)$$
(8)

Use (7) to change from du to dw:

$$du = \frac{-\sqrt{2} \cdot T_c}{2.564} \cdot dw \tag{9}$$

Substitute (5), (7), (8), & (9) into (4):

$$p_{out}(t) = \frac{2.564}{T_c \cdot \sqrt{2 \cdot \pi}} \cdot \int_a^b \exp\left[-w^2\right] \cdot \left[\frac{-\sqrt{2} \cdot T_c}{2.564}\right] \cdot dw \tag{10}$$

Panduit Corp. Rick Pimpinella & Al Brunsting May 25 - 26, 2004 | Long Beach, CA IEEE P802.3aq Task Force slide 13 of 18 ISI power penalties

Cancel constants & replace minus sign with an exchange of limits of integration:

$$p_{out}(t) = \frac{1}{\sqrt{\pi}} \cdot \int_{0}^{a} \exp\left[-w^{2}\right] \cdot dw$$
(11)

Use (6) & (8) to evaluate (13). Note limits of integration:

$$p_{out}(t) = \frac{1}{2} \cdot \left\{ erf\left[\frac{2.564}{2 \cdot \sqrt{2}} \cdot \left(\frac{2 \cdot t + T_{eff}}{T_c}\right)\right] - erf\left[\frac{2.564}{2 \cdot \sqrt{2}} \cdot \left(\frac{2 \cdot t - T_{eff}}{T_c}\right)\right] \right\}$$
(12)

Evaluate (12) at t = 0 [see sketch for (2)] and use identity erf(-x) = -erf(x) [8]:

$$p_{out}(t=0) = erf\left[\frac{2.564}{2 \cdot \sqrt{2}} \cdot \left(\frac{T_{eff}}{T_c}\right)\right]$$
(13)

This is the desired result for the time domain with all the details which helps intuitive understanding.

Frequency domain. Here is a similar analysis. Start from first principles. See slide "ISI in the frequency domain".

$$P_{out}(v) = P_{in}(v) \cdot P_s(v) \cdot P_f(v) \cdot P_r(v)$$
(14)

Panduit Corp. Rick Pimpinella & Al Brunsting May 25 - 26, 2004 | Long Beach, CA IEEE P802.3aq Task Force slide 14 of 18 ISI power penalties

Fourier transform of $P_{out}(v)$ gives equivalent time domain, $p_{out}(t)$, which is desired:

$$p_{out}(t) = \int_{-\infty}^{+\infty} P_{out}(v) \cdot \exp(-2 \cdot \pi \cdot i \cdot v \cdot t) \cdot dv$$
(15)

For a non-return to zero (NRZ) wave form, worst case $P_{in}(v)$ [10]:

$$P_{in}(\nu) = \frac{\sin(\pi \cdot \nu \cdot T_{eff})}{(\pi \cdot \nu)}$$
(16)

Assume optical path, $P_c(v)$, can be combined: $P_c(v) = P_s(v)*P_f(v)*P_r(v)$. Assume that Pc(n) in the time domain has a Gaussian distribution which can be converted to the frequency domain with a Fourier transform:

$$P_{c}(\nu) = \int_{-\infty}^{+\infty} \left[\frac{1}{\sqrt{2 \cdot \pi} \cdot \sigma_{c}} \cdot \exp\left(-\frac{t^{2}}{2 \cdot \sigma_{c}^{2}}\right) \right] \cdot \exp(-2 \cdot \pi \cdot i \cdot \nu \cdot t) \cdot dt$$
(17)

Resultant SD, sec., for the transmitter, fiber, & receiver in time domain.

Use Euler formula in (17),
$$e^{iy} = \cos(y) + i*\sin(y)$$

$$P_{c}(v) = \int_{-\infty}^{+\infty} \left[\frac{1}{\sqrt{2 \cdot \pi} \cdot \sigma_{c}} \cdot \exp\left(-\frac{t^{2}}{2 \cdot \sigma_{c}^{2}}\right) \right] \cdot \cos(2 \cdot \pi \cdot v \cdot t) \cdot dt + (18)$$

$$i \cdot \int_{-\infty}^{+\infty} \left[\frac{1}{\sqrt{2 \cdot \pi} \cdot \sigma_{c}} \cdot \exp\left(-\frac{t^{2}}{2 \cdot \sigma_{c}^{2}}\right) \right] \cdot \sin(2 \cdot \pi \cdot v \cdot t) \cdot dt$$

Panduit Corp. Rick Pimpinella & Al Brunsting May 25 - 26, 2004 | Long Beach, CA IEEE P802.3aq Task Force slide 15 of 18 ISI power penalties

The term in (18) with sin(y) is odd: Integration over a symmetrical range in 0. The cos(y) term has been integrated [5]:

$$P_{c}(v) = \exp\left[-\frac{\left(2 \cdot \pi \cdot v \cdot \sigma_{c}\right)^{2}}{2}\right]$$
(19)

From (14), (15), (16) & (19):

$$p_{out}(t=0) = \int_{-\infty}^{+\infty} \left\{ \frac{\sin(\pi \cdot \nu \cdot T_{eff})}{(\pi \cdot \nu)} \right\} \cdot \left\{ \exp\left[-\frac{(2 \cdot \pi \cdot \nu \cdot \sigma_c)^2}{2} \right] \right\} \cdot d\nu$$
(20)

(20) can be evaluated numerically to determine P_{isi} .

References 1

- [1] "Optical Receiver Performance Evaluation," Application Note: HFAN-3.0.2, Rev 0; 03/03, Maxim Integrated Products, web site: http://www.maxim-ic.com/, March 2003.
- [2] The spreadsheet model for the 10Gigabit Ethernet Link Model is located at http://www.ieee802.org/3/efm/public/tools/EFM0_0_2.7.xls.
- [3] "Bandwidth and Rise Time Calculations for Digital Multimode Fiber-Optic Data Links," Brown, G., J. Lightwave Technol., Vol. 10, No. 5, pp. 672 - 678, May 1992.
- [4] "An Introduction to Statistical Communication Theory," Thomas, J. B., New York: Wiley, 1969, p. 143.
- [5] "Numerical Recipes: The Art of Scientific Computing," Press, W. H., et al., Cambridge, UK: Cambridge University Press, 1986, p. 383.
- [6] "Review of the 10Gigabit Ethernet Link Model," Cunningham, D. and Dawe, P., ONIDS 2002 White Paper, http://literature.agilent.com/litweb/pdf/5988-5908EN.pdf.
- [7] "Advanced Engineering Mathematics, 2nd Ed.," Kreyszig, E., New York: Wiley, 1967, p. 509.
- [8] "Handbook of Mathematical Functions," Eds. Abramowitz, M., and Stegun, I., New York: Dover, 1965.

Panduit Corp. Rick Pimpinella & Al Brunsting

References 2

- [9] "Proposal to Modify the ISI Penalty calculation in the current GbE Spreadsheet Model," David Dolfi, web site: http://www.ieee802.org/3/10G_study/public/email_attach/new_isi.pdf, April 6, 2000.
- [10] "Dispersion penalty analysis for LED/Single-Mode Fiber transmission systems," Gimlet, James L., and Cheung, Nim K. J. Lightwave Technol., Vol. LT-4, No. 9, pp. 1381 - 1392, September 1986.
- [11] "Signals and Systems: Continuous and Discrete, 3rd Ed.," New York: Macmillan, 1993.
- [12] "802.3aeTM IEEE Standard for Information technology Telecommunications and information exchange between systems— Local and metropolitan area networks—Specific requirements Part 3: Carrier Sense Multiple Access with Collision Detection (CSMA/CD) Access Method and Physical Layer Specifications," IEEE, 2002.